Федеральное государственное автономное образовательное учреждение высшего образования «Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики»

На правах рукописи

КУЧУР ОЛЕГ АЛЕКСАНДРОВИЧ

«Механизмы усиления гибели p53-положительных опухолевых клеток при комбинировании ионизирующего излучения и ингибиторов CDK8/19зависимого перепрограммирования транскрипции»

Диссертация на соискание ученой степени кандидата биологических наук

1.5.4. – Биохимия

Научный руководитель

доктор медицинских наук Штиль А.А.

Санкт-Петербург 2023

ОГЛАВЛЕНИЕ

BBE	ЕДЕНИЕ
Глан	за 1. ОБЗОР ЛИТЕРАТУРЫ 10
1.1	Проблема онкологических заболеваний в мире 10
1.2	Механизмы действия ионизирующего излучения11
1.3	Общие ответы клетки на терапевтическое ионизирующее излучение 12
1.4	Семейство р53 – основной молекулярный маркер развития опухолей 14
1.4	.1 Историческая справка 15
1.4	.2 Структура и функции белков семейства р53 15
1.4	.3 Мутации и изоформы белков семейства р53 17
1.4	.4 Роль р53 при ионизирующем излучении 19
1.5	Становление радиорезистентности клеток
1.5	.1 Радиорезистентность, опосредованная белками семейства р53 23
1.5	.2 Пути преодоления радиорезистентности при модуляции белков семейства
	p53
1.6	Взаимодействие p53 и циклинзависимых киназ (CDK): связь при облучении
1.6	.1 Циклинзависимые протеинкиназы как модуляторы семейства р53
1.6	.2 Регуляция p53 посредством CDK8/19 – перспективный подход 35
1.7	Перепрограммирование транскрипции как подход к радиосенситизации
	опухолевых клеток
Глаг	за 2. МАТЕРИАЛЫ И МЕТОДЫ
Глан	за 3. РЕЗУЛЬТАТЫ РАБОТЫ
3.1	Выживаемость клеток после воздействия терапевтическими дозами
	облучения
3.2	Изменения клеточного цикла
3.3	Экспрессия р53-ассоциированных генов в зависимости от дозы облучения и
	статуса n53 51

3.4	Влияние статуса р53 и дозы облучения на индукцию р53-зависимых белков
3.5	Выживаемость клеток при комбинации облучения с ингибированием
	CDK8/1961
3.6	Анализ клеточного цикла при комбинации облучения и ингибитора CDK8/19
3.7	Клоногенный анализ при комбинации ингибирования CDK8/19 с лучевыми
	воздействиями
3.8	Цитохимическое выявление маркера клеточного старения
3.9	Экспрессия p53-регулируемых генов при комбинации облучения и
	ингибитора CDK8/1971
3.10	Влияние комбинации облучения и ингибитора CDK8/19 на индукцию p53-
	ассоциированных белков75
3.11	Экспрессия генов-регуляторов р53 при комбинации облучения и ингибитора
	CDK8/19
3.12	Влияние облучения и ингибитора CDK8/19 на индукцию белков,
	регулирующих р53
3.13	Взаимосвязь транскрипционного фактора NFкВ и экспрессии p53 с
	ингибированием CDK8/19
3.14	Взаимодействия NFкB, p53 и CDK8/19
Глан	за 4. ОБСУЖДЕНИЕ
37K	пючение 100
JAK	
ВЫІ	ЗОДЫ 104
СПИ	АСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ 105

ВВЕДЕНИЕ

Актуальность проблемы

С накоплением знаний о механизмах регуляции клеточного цикла, репарации макромолекул и гибели (или выживания) опухолевых клеток при действии ионизирующего излучения развиваются представления о молекулярных процессах, лежащих в основе указанных феноменов. Общепризнанным сенсором ионизирующего излучения в клетке является транскрипционный фактор р53 [Haffty B.G., Glazer P.M., 2003]. Этому белку принадлежит ключевая роль в ответе клеток на многие стрессовые воздействия. Повреждение целостности ДНК при облучении стабилизирует р53, следствием чего является задержка смены фаз клеточного цикла и/или гибель клеток [Bykov V.J. et al., 2018]. Однако опухолевые клетки способны активировать механизмы защиты – усиливать репарацию повреждений, смещать баланс окисления-восстановления, повышать экспрессию антиапоптотических генов и др. В этих ситуациях клетки, выжившие после облучения, поддерживают жизнеспособность соседних клеток (паракринная регуляция). Кроме того, в выживших клетках изменяется профиль экспрессии генов: такие клетки существенно отличаются от первичных. Все эти изменения создают условия для прогрессии опухоли.

В последние годы предметом исследований становится механизм адаптации стрессовым воздействиям перепрограммирование клеток эукариот К _ транскрипции с участием протеинкиназы CDK8 и ее паралога CDK19 компонентов мультибелкового транскрипционного комплекса Mediator [Chen M. et al., 2017]. Этот особенный механизм затрагивает глобальные изменения экспрессии генов. Перепрограммируется транскрипция не любых, а лишь активно экспрессирующихся генов (в частности, генов ответа на разнообразные – не любые! _ экзогенные стимулы: цитокины, факторы д**р**.). роста И Перепрограммирование транскрипции имеет место не в любых клетках (тканеспецифичность). Такая селективность механизма перепрограммирования транскрипции означает, что в конкретной ситуации важными являются

определенный транскрипционный фактор и определенный стрессовый раздражитель.

р53-зависимая "избранным" Является регуляция транскрипции ЛИ механизмом для стресс-индуцируемого перепрограммирования? Известна роль транскрипционного фактора NFкB (nuclear factor kappa B) в срочной активации ряда генов [Chen M. et al., 2017]. NFкВ - не единственный кофактор транскрипции. Перепрограммирование перепрограммирования регулирует становление лекарственной устойчивости рака молочной и предстательной желез [McDermott M.S. el al., 2017; McCleland M.L. et al., 2015]. Эти феномены не описываются ролью NF_{\u036}B. Может ЛИ перечень кофакторов перепрограммирования транскрипции быть пополнен за счет р53?

Здесь объединяются фундаментальный и практический аспекты исследования: является ли индукция p53 при облучении перепрограммируемым процессом и можно ли повысить эффективность воздействия ингибированием перепрограммирования транскрипции?

Первый аспект проблемы – р53-зависимая и -независимая регуляция выживания/гибели. Задержка смены фаз клеточного цикла в клетках с интактным ("дикий тип") р53 зависит от трансактивации гена, кодирующего белок р21. Последний ингибирует формирование комплексов циклин-зависимых протеинкиназ с циклинами, предотвращая или замедляя переход G₁/S. Отсюда следует, что ответ на облучение зависит от нормально функционирующего р53. Однако р53 может способствовать и восстановлению повреждений; клетки приобретают фенотип(ы) "старения", что позволяет им выжить и дать начало агрессивной опухоли [Mardi K. et al., 2017; Yosef R. et al., 2017]. Можно ли предотвратить р53-зависимую выживаемость облученных клеток воздействием на перепрограммирование транскрипции? Как регулируется выживаемость облученных клеток при нефункционирующем р53?

В настоящей работе впервые исследуется роль CDK8/19 в регуляции выживаемости/гибели опухолевых клеток человека в зависимости от статуса p53.

Цель исследования

Установление молекулярных механизмов гибели опухолевых клеток человека с различным статусом p53 при действии ионизирующего излучения и ингибировании CDK8/19.

Задачи исследования

1. Установить механизмы гибели клеток колоректального рака человека (линия HCT116) с интактным p53 и изогенных сублиний с нефункционирующим p53 (HCT116p53KO) и CDK8 (HCT116_CDK8KO) при воздействии рентгеновскими фотонами и ингибировании CDK8/19.

2. Выявить особенности регуляции р53-зависимых ответов в облученных клетках при инактивации CDK8/19.

3. Исследовать влияние химической либо генетической супрессии CDK8/19 на активность p53

4. Изучить роль фактора транскрипции NFкB в регуляции p53 с участием CDK8/19.

5. Установить возможность снижения эффективных доз облучения при ингибировании CDK8/19 в опухолях с интактным p53.

Научная новизна работы

Впервые выявлен феномен регуляции выживания опухолевых клеток человека, подвергнутых воздействию терапевтических доз ионизирующего излучения, в зависимости от статуса p53 (интактный или нефункционирующий) и активности циклинзависимых протеинкиназ 8/19 (CDK8/19).

Впервые установлен механизм повышения гибели облученных клеток с интактным p53 при ингибировании CDK8/19: предотвращение индукции гена *TP53*. Ингибирование CDK8/19 в облученных клетках с интактным p53 функционально сходно с нокаутом гена *TP53*.

Впервые выявлены механизмы регуляции p53-зависимых событий при ингибировании CDK8/19 и определены белки-партнеры p53, чувствительные и нечувствительные к ингибиторам CDK8/19.

Впервые показана возможность повысить эффективность лучевого воздействия его комбинированием с нетоксичными ингибиторами CDK8/19.

Положения, выносимые на защиту

1. Нетоксичные селективные низкомолекулярные ингибиторы циклинзависимых транскрипционных протеинкиназ 8 и 19 (CDK8/19) или генетическая инактивация *CDK8/19* снижают индукцию гена *TP53* и накопление белка р53 в ответ на рентгеновское излучение в терапевтических дозах.

2. Ингибирование CDK8/19 во время облучения повышает гибель опухолевых клеток по p53-зависимым механизмам. Эффект ингибирования CDK8/19 в клетках с интактным p53 эквивалентен генетическому нокауту *TP53*.

3. Комбинации лучевого воздействия с ингибиторами перепрограммирования транскрипции перспективны для элиминации p53-положительных опухолевых клеток.

Теоретическая и практическая значимость работы

Значимость работы фундаментальной биологии ЛЛЯ определяется важностью установления молекулярных механизмов регуляции экспрессии генов эукариот в ответ на внешние воздействия. Выявление связи транскрипционного фактора p53 протеинкиназ 8/19 И циклинзависимых модуляторов перепрограммировании транскрипции - имеет общебиологическое значение. Практические аспекты диссертации важны для разработки рациональных подходов к оптимизации консервативной терапии опухолей с использованием нетоксичных селективных ингибиторов перепрограммирования транскрипции.

Степень достоверности и апробация результатов

Результаты исследований, представленные в работе, получены на современном оборудовании, с использованием общепринятых биологических моделей. Достоверность полученных результатов подтверждается первичными данными, а также статистической обработкой данных.

По теме диссертации опубликовано 11 печатных работ, из которых 3 – статьи в рецензируемых журналах, рекомендуемых ВАК при Минобрнауки РФ для опубликования основных научных результатов диссертаций на соискание ученой степени кандидата наук, на соискание ученой степени доктора наук, и цитируемых в зарубежных базах данных (Scopus, Web of Science), 1 – патент РФ и 7 – материалы всероссийских и международных научных конференций, опубликованные в других изданиях.

По результатам исследований, вошедших в диссертацию, зарегистрирован патент №2777869 на изобретение «Способ усиления гибели опухолевых клеток при комбинации ионизирующего излучения и ингибитора CDK», Роспатент; получены гранты РФФИ 20-34-90046 «Механизмы повышения чувствительности опухолевых клеток к ионизирующему излучению: роль p53 и перепрограммирования транскрипции» и РНФ 22-24-00588 «Белки семейства p53 как регуляторы металлошаперона Atox1 при ионизирующем излучении».

Личный вклад автора

Все описанные в работе экспериментальные процедуры, за исключением опытов по воздействию ионизирующего излучения на клетки, были проведены автором лично. Эксперименты с радиотерапевтической установкой РУМ-17 проводились на кафедре военной токсикологии и медицинской защиты Военно-Медицинской Академии им. С.М. Кирова под контролем Завирского А.В. и Башарина В.А. Материалы, вошедшие в представленную работу, обсуждались и публиковались совместно со всеми соавторами и научным руководителем.

Структура и объём диссертации

Диссертация состоит из 7 глав: введение, обзор литературы, описание материалов и методов, изложение результатов собственных исследований, обсуждение, заключение и выводы, список литературы. Работа изложена на 133 страницах текста, включая 49 рисунков и 1 таблицу. Список цитируемой литературы содержит 243 источника.

Финансирование

Диссертационная работа была выполнена при финансовой поддержке мегагранта Минобрнауки Российской Федерации № 14.W03.31.0020 (руководитель Ронинсон И.Б.) и гранта РФФИ «Аспиранты» № 20-34-90046 (руководитель Штиль А.А.).

Глава 1. ОБЗОР ЛИТЕРАТУРЫ

1.1. Проблема онкологических заболеваний в мире

В 2020 году онкологические заболевания стали причиной практически 10 миллионов смертей, что делает их второй по значимости – после инфекционных – группой заболеваний, при этом каждая 6 смерть вызвана злокачественным опухолями. Кроме того, за тот же год выявлено 19,3 миллиона новых случаев. Примечательно, что примерно 70% причин смерти от онкологий происходит в странах с низким и средним уровнем дохода [Ferlay J. et al., 2020; WHO Reports, 2020].

Возникновение опухоли – это результат малигнизации нормальных клеток в ходе многостадийного процесса, который обычно прогрессирует от предраковых изменений клеток до злокачественного новообразования. Эти изменения являются результатом взаимодействия между генетическими факторами человека и различными внешними агентами, среди них [Stewart B.W., Wild C.P., 2014; Perera F.P., 1997]:

• физические канцерогены – ультрафиолетовое и ионизирующее-излучение [Little, 2000];

• химические канцерогены - бензпирены, акриламид, афлатоксин и др. [Ваап R. et al., 2009; Wogan G.N. et al, 2004];

• биологические канцерогены - вирусы папилломы человека, гепатита С [Plummer M. et al., 2016].

Старение является еще одним фундаментальным фактором развития рака. Вероятность развития онкологических заболеваний резко увеличивается с возрастом, что связано с ослаблением регуляции клеточных процессов, таких как механизмы репарации, одновременно с накоплением мутаций, эпигенетическими изменениями [Campisi J., Yawsen P., 2009].

Из наиболее распространенных видов опухолей (в случаях на год) можно выделить: рак легких – 2.09 млн, рак молочной железы - 2 млн, колоректальный рак – 1.8 млн, аденому предстательной железы – 1.28 млн, плоскоклеточный рак кожи – 1.04 млн. Похожая картина с причинами смерти от онкологии на 2020 г.: рак легких – 1.76 млн, колоректальный рак - 862 тыс. рак желудка - 783 тыс. [Sung H. et al., 2021].

Отсюда следует, что борьба с онкологическими заболеваниями оказывает значительное – и все увеличивающееся – влияние на мировую экономику. Затраты на исследования и лечение рака в 2010 г. составляли 56 млрд долларов США. К 2020 г. наблюдался 3-кратный рост – 167 млрд долларов на фундаментальные и прикладные исследования в онкологии [Steward W.B., Wild C.P., 2014; The IQVIA Institute, 2021].

Среди консервативных стратегий борьбы с новообразованиями выделяют лучевую, лекарственную терапию и иммунотерапию. В большинстве случаев для повышения эффективности лечения используются комбинации этих методов. В настоящей диссертации используются лучевые воздействия как модель для установления молекулярных механизмов ответов опухолевых клеток на "терапевтический стресс".

1.2. Механизмы действия ионизирующего излучения

Ионизирующее излучение – от первоначального применения фотонов до современных частиц (протоны, электроны, нейтроны, тяжелые изотопы углерода) - важнейший метод лечения опухолей. Его эффективность подтверждается на протяжении более полувека. В результате лучевого воздействия нарушаются функции генетического аппарата структура И клетки вследствие непосредственного разрушения молекулярных связей (ионизация атомов в ДНК) и опосредованно - через радиолиз воды [Teoule R., 1987; Chatterjee N., Walker G.C., 2017]. В последнем случае ионизирующее излучение взаимодействует с молекулами воды, формируя пероксиды и свободные радикалы, которые воздействуют на ДНК и/или меняют профиль экспрессии генов опухолевых клеток [Amundson S.A., Fornace Jr J.A., 2001; Ding L. et al., 2005].

Опухолевые клетки различного тканевого происхождения по-разному чувствительны к воздействию ионизирующего излучения. Это обусловлено

тканеспецифическими особенностями экспрессии генов, фазами клеточного цикла и др.

1.3. Общие ответы клетки на терапевтическое ионизирующее излучение

Ионизирующее излучение приводит к одно- (single strand breaks, SSB) или двухнитевым (double strand breaks, DSB) разрывам ДНК [Reisz J.A. et al., 2014; Cannan W.J., Pederson D.S., 2016]. Репарация двухнитевых разрывов происходит довольно медленно. DSB, не устраненные в ходе репарации ДНК, вызывают серьезные нарушения вплоть до гибели клеток [Sokolov M.V. et al., 2005]. Возможен и альтернативный сценарий: определенные параметры длительности и интенсивности облучения, индивидуальные для каждого типа опухолей и пациента, могут запускать процессы, способствующие прогрессии опухолей, в частности, формированию радиорезистентных клеток.

Индуцированные ионизирующим излучением DSB являются одними из наиболее опасных повреждений. Они немедленно распознаются киназами АТМ (мутирована семейство при атаксии-телеангиэктазии, входит фосфатидилинозитол-3-ОН-подобных киназ), АТК (ассоциированная с АТМ и Rad3), а также репарационным комплексом MRN, представленным белками MRE11/RAD50/NBS1. Этот комплекс является одной из важнейших мишеней ATM и ATR [Huang R.X., Zhou P.K., 2020; Bian L. et al., 2019; Jazayeri A. et al., 2006; Symington L.S., 2002]. АТМ находится в цитоплазме в форме неактивного димера и мономеризуется при образовании DSB [Lee J.H., Paull T.T., 2005]. Для перехода в мономерную форму и поддержания активной конформации АТМ необходимо взаимодействие с NBS1 и связывание комплекса MRN с концами разрывов ДНК [Dupré A. et al., 2006]. Важнейшей мишенью АТМ является гистон H2AX, который фосфорилируется по серину в SQ(E/D) мотиве С-конца после возникновения повреждения ДНК. Фосфорилированный H2AX (гамма-H2AX) служит основой для сборки компонентов репарационного комплекса, состоящего из ATM, MDC1, 53BP1, BRCA1, MRN-комплекс и др. Первоначально миграция этих белков к месту разрыва не требует присутствия фосфорилированного H2AX,

однако их последующая ассоциация с хроматином без него невозможна. Таким образом, H2AX необходим не для рекрутирования компонентов репарационного аппарата, а для их аккумулирования в сайте повреждения [Kinner A. et al., 2008; Turinetto V., Giachino C., 2015].

Хромосомные двухцепочечные разрывы репарируются двумя путями: гомологической рекомбинацией (HR) и негомологическим соединением концов (NHEJ). На первом этапе как гомологической рекомбинации, так и рекомбинации с негомологическим соединением концов, с разрывом соединяется комплекс MRN, который процессирует концы разрыва с образованием одноцепочечных 3'липких концов. К этим концам присоединяется репликативный белок А, который вместе с Rad52 позволяет Rad51 образовать нуклеопротеиновый комплекс с однонитевой ДНК [Li X., Heyer W.D., 2008; So A. et al., 2022], соединяющийся с комплементарным комплексом на другой нити ДНК, после чего происходит синтез недостающих комплементарных цепей и лигирование. Гомологическая рекомбинация возможна только в S и G2 фазах клеточного цикла, так как для нее нужны цепи гомологичных хроматид. NHEJ-путь используется для репарации в G₁, G₀ и M фазах. После образования DSB с местом разрыва связывается MRN комплекс, а затем 18 димеров белков Ku70/Ku80 [Daley J.M., Sung P., 2014; Kakarougkas A., Jeggo P.A., 2014; Chang H.H. et al., 2017]. Рекрутируется каталитическая субъединица ДНК протеинкиназы, которая процессирует концы разрывов, после чего они достраиваются и лигируются комплексом ДНК-лигазы 4: кофактора Lif1/XRCC4 и Nej1 [Ribes-Zamora A. et al., 2007; Mahaney B.L. et al., 2013].

Ещё один участник первичных ответов на повреждения ДНК - ATR - более универсален, он активируется при одиночных и двойных разрывах, образовании сшивок, репликационном стрессе. При всех этих повреждениях образуются одноцепочечные участки ДНК, с которыми связывается репликативный белок А, [Flynn R.L., локализующий АТК к месту повреждения Zou L., 2011]. Обязательным компонентом комплекса, локализующего ATR к месту ATRIP (ATR-взаимодействующий белок). повреждения, является белок

связывающийся с репликативным белком [Ball H.L. et al., 2005]. Для активации ATR необходима локализация комплекса Rad9-Rad1-Hus1 (9-1-1 комплекс) около места повреждения. Наконец, комплекс 9-1-1 рекрутирует белок TOPBP1, который и активирует ATR. В итоге этот комплекс активирует киназу сверочной точки Chk1 (чекпойнт-киназа 1), опосредуя репарацию [Delacroix S. et al., 2007; Mordes D.A. et al., 2008].

АТК фосфорилирует ряд репарационных белков, таких как BRCA1, WRN, BLM, ответственных за рекомбинационную репарацию, FANCD2 (белок анемии Фанкони), который осуществляет репарацию сшивок цепей ДНК (фосфорилирование ATR необходимо для его локализации к месту повреждения) и XPA - белок эксцизионной репарации нуклеотидов [Pichierri P., Rosselli F., 2004; Wu X. et al., 2006]. ATR также фосфорилирует H2AX после одноцепочечных разрывов ДНК и во время репликационного стресса.

Не менее значимым детектором повреждений ДНК после гамма-радиации является комплекс ДНК-зависимой протеинкиназы (DNA-PKcs) с белками Ки70 и Ки80. Ки-белки ответственны за связывание с ДНК, а DNA-PKcs передает сигнал о повреждении эффекторным белкам. Однако показано, что эта киназа также может взаимодействовать с поврежденной ДНК без участия Ки-белков и даже образовывать сенсорный комплекс с p53, который способен индуцировать апоптоз и ингибировать репликацию [Mohiuddin I.S., Kang M.H., 2019; Yue X. et al., 2020].

Изложенные в этом разделе механизмы направлены на активацию белка p53 - центрального участника ответов на радиоиндуцированные повреждения и регуляцию процессов выживания/ гибели клеток.

1.4. Семейство р53 – основной молекулярный маркер развития опухолей

Смена фаз клеточного цикла, репарация повреждений, выживание регулируются множеством разнообразных механизмов, среди которых одним из наиболее изученных и привлекающих интерес учёных ещё со второй половины XX века является белок p53 [McIlwrath A.J. et al., 1994; Mallya S.M., Sikpi M.O.,

1999]. Белки семейства p53 представляют собой транскрипционные факторы и необходимы для остановки репликации ДНК и запуска программ репарации; при этом в случае сильного стрессового сигнала и значительных клеточных повреждений запускается гибель [Dietz S. et al., 2002].

1.4.1. Историческая справка

История семейства p53 начинается с 1979 года, когда несколькими независимыми группами был открыт белок, образующий комплекс с онкопротеином опухолевого роста – большим Т-антигеном полиомавируса SV40 [Lane D.P., Crawford L.V., 1979]. Тогда малоизвестный фактор рассматривался исключительно как вспомогательный компонент трансформации вируса SV40 и экспрессии t- (small) и T- (large) антигенов в клетках хозяина. Вскоре удалось выделить и сыворотку, в которой содержался неизвестный фактор, после чего впервые была установлена его молекулярная масса – 53-54 кДа [Linzer D.I., Levine A.J, 1979].

Проблема не теряет актуальность: новые механизмы ответа опухолевых клеток на ионизирующее излучение и, главным образом, их выживаемости невозможно исследовать вне значимости семейства p53. Что остается неясным в обширном круге вопросов о роли семейства p53 как главного молекулярного механизма в реакциях клеток на ионизирующее излучение?

1.4.2. Структура и функции белков семейства р53

Белок p53 состоит из 393 аминокислотных остатков и пяти доменов, главными из которых являются домены активации, связывания ДНК и тетрамеризации [Joerger A.C., Fersht A.R., 2010; Sullivan K.D. et al., 2018]. Экспрессия гена *TP53* и активность белка p53 регулируются различными сигналами, основным (но не единственным) из которых является повреждение ДНК. После возникновения разрывов в ДНК, образовавшихся вследствие лучевого воздействия на клетки, протеинкиназы ATM и ATR активируют транскрипционную компетентность p53 посредством фосфорилирования по остатку серина в положении 15 [May P., May E., 1999; Tibbetts R.S. et al., 1999].

Два других белка семейства – р63 и р73 – имеют схожие с р53 домены, схематичное их сравнение представлено на рисунке 1. Все три белка регулируют транскрипцию как гомотетрамеры [Harms K.L., Chen X., 2006; Joerger A.C. et al., 2009]. Активация р73 происходит при ионизирующем излучении, воздействии ДНК-повреждающих лекарственных соединений и препаратов, нарушающих динамику микротрубочек через пути, регулируемые тирозинкиназой c-Abl [Yang A., McKeon F., 2000]. Судя по всему, существует кооперация между с-Abl и активацией апоптоза белком p73 [Wang X. et al., 2011]. Об особенностях функций р63 известно гораздо меньше. Отмечено, что этот белок также может активироваться в ответ на УФ- и ионизирующее облучение и опосредует апоптоз даже при инактивированном p53 [Johnson J.L. et al., 2008], а усиление экспрессии чувствительность типах опухолей снижает p63 В некоторых клеток К ионизирующему излучению [Moergel M. et al., 2010]. Учитывая высокую степень структурного сходства белков семейства, полноразмерные р73 и р63 могут связываться И активировать транскрипцию большинства р53-зависимых промоторов [Dötsch V. et al., 2008].

Рисунок 1. Схематическое сравнение доменной структуры белков семейства p53. Домен SAM и вариации размера N-концевого (TAD) домена опосредуют различия молекулярной массы и некоторых взаимодействий p63/p73.

1.4.3. Мутации и изоформы белков семейства р53

Нарушения функций белков семейства р53 могут происходить в результате мутаций генов ТР53, ТР63, ТР73 или генов, продукты которых участвуют в модификации этих белков, например, протеинкиназ, фосфорилирующих р53 (Cdc2, JNK1, протеинкиназа С) (Harris C.C., 1996). Ген TP53 кодирует девять изоформ белка (р53, р53β, р53γ, Δ133р53, Δ133р53β, Δ133р53γ, Δ40р53, Δ40р53β и $\Delta 40$ р53 γ); это разнообразие определяется альтернативным сплайсингом мРНК, альтернативным использованием промотора или сайтов инициации трансляции [Bourdon J.C., 2007]. Анализ биоптатов 29346 опухолей различной тканевой принадлежности показал, что большинство из них несут мутантный р53 (Рис.2). Большая часть нарушений функций р53 в опухолевых клетках происходит из-за миссенс- и/или точечных мутаций; встречаются также делеции и ошибки сплайсинга (Allred D.C. et al., 1993). Около 15% мутаций р53 обусловлено сдвигом рамки считывания или нонсенс-мутациями [Freed-Pastor W.A., Prives C., 2012]. В большинстве опухолей мутации ТР53 приходятся на экзоны 5-8, кодирующие ДНК-связывающий домен. Вследствие этого 80% миссенс-мутаций р53 связано с про-онкогенной функцией [Garcia C.A. et al., 2000; Hartmann A. et al., 1995].

Рисунок 2. Распространённость мутантных форм p53 в опухолях на основании секвенирования ДНК (IARCTP53 Database, 2020). По оси X – количество биоптатов с выявленными мутациями, по оси Y – количество проанализированных биоптатов

Основное отличие большинства мутантных форм от p53 дикого типа, время полужизни которого в покоящихся клетках не превышает 5-10 мин - повышенная стабильность из-за нарушения отрицательной обратной связи с E3-лигазой Mdm2 и связывания с Hsp90 и Hsc70, что стабилизирует p53 и приводит к его накоплению в клетках [Quinlan D.C. et al., 1992; Yue X. at al., 2017]. Важно, что мутантный p53 способен образовывать олигомерные комплексы с p53 дикого типа. Это связывание может инактивировать нормальный белок и объясняет,

почему мутантный p53 способен трансформировать клетки в присутствии белка дикого типа [Davidoff A.M. et al., 1991].

Широко разнообразие изоформ двух других белков семейства. Гены ТР63 и *ТР73* имеют внутренний промотор в 3-м интроне и, благодаря альтернативному сплайсингу, экспрессируют 6 и 35 вариантов мРНК, соответственно. Ген ТР63 локализован в 3q27-ter области; с него экспрессируются три альтернативно сплайсированные С-концевые изоформы α, β, γ. Ген ТР73 расположен в локусе 1p36; транскрипты представляют собой альтернативно сплайсированные карбокси-концевые изоформы α-η [Inoue K., Fry E.A., 2014] мРНК ТР63 и ТР73 могут транскрибироваться с дистального и внутреннего (в интроне 3) промоторов. регулирует *TAp73* Дистальный промотор экспрессию TAp63 И (трансактивационные домены имеют гомологию с ТР53), тогда как с внутреннего промотора транскрибируются изоформы ΔNp63 и ΔNp73 - укороченные по Nконцу (ΔN) белки с свойствами, противоположными таковым у изоформ p63/p73TA или при отсутствии домена TA [Bénard J. et al., 2003]. Эти результаты свидетельствуют о необычайном разнообразии семейства; не удивительно, что рассматриваемая проблема не только не теряет актуальность, а приобретает новые уровни сложности.

1.4.4. Роль р53 при ионизирующем излучении

Как было сказано выше, при ионизирующем излучении с участком поврежденной молекулы ДНК связываются белки, активирующие протеинкиназы АТМ и АТR. Последние, в свою очередь, активируют протеинкиназы «контрольных точек» (checkpoints) Chk1 и Chk2, фосфорилирующие p53 по Ser15 Ser20. остаткам И Активация p53 приводит к индукции его функционального антагониста Mdm2. Связывание Mdm2 с N-концом p53 моноубиквитинированию p53 способствует И ядерному экспорту или полиубиквитинированию и гидролизу p53 в протеасоме [Maréchal A., Zou L., 2013; Gajjar M. et al., 2012; Joerger A.C., Fersht A.R., 2016]. На рисунке 3

представлена обобщённая схема внутриклеточных ответов на ионизирующее излучение с участием белков семейства p53.

Рисунок 3. Механизмы ответа на ионизирующее излучение с участием белков семейства p53. DSB, SSB – повреждения двойной спирали и отдельной цепи ДНК, соответственно.

«Выбор» между выживанием клетки ИЛИ гибелью регулируется посттрансляционными модификациями р53 и его изоформ, белками-партнерами и набором активируемых генов [Saito S.I. et al., 2002]. Белок р53 активирует транскрипцию p21^{Сір1/Waf1} - блокатора фазы G₁, ингибирующего связывание циклинов A и B с протеинкиназами CDK1 и CDK2 [Cmielova J., Rezáčová M., 2011; Kreis N.N. et al., 2014]. О роли p53 в регуляции S-фазы известно недостаточно. В S-фазе Chk2 фосфорилирует фосфатазу CDC25A, что приводит к ее деградации и остановке клеточного цикла (Jinno S. et al., 1994). Р53 может задерживать прохождение G₂/M благодаря репрессии промоторов генов CDC2 и *CCNB1* (циклина Б) [Fei P., El-Deiry W.S., 2003].

В ответ на лучевое воздействие p53 может стимулировать апоптоз через индукцию проапоптотических (Bax) и репрессию антиапоптотических (Bcl-2)

белков, а также активацию или ингибирование других таргетных генов, участвующих в регуляции клеточного цикла. Известно, что низкие дозы облучения индуцируют p21 и Hdm2 - гомолог Mdm2, а высокие дозы увеличивают соотношение Bax:Bcl-2, способствуя апоптозу [Latonen L. et al., 2001; Okazaki R., 2022]. Радиорезистентность обусловливается антиапоптотическими белками (гиперэкспрессией семейства Bcl-2), потерей апоптотического сигналинга или ингибированием компонентов генов, кодирующих каспазы.

Эффективность репарации повреждений ДНК в ответ на облучение зависит от гистологического происхождения клеток и фазы клеточного цикла. Наиболее чувствительны фазы G₂ и митоз. Важно, что p53 может играть двоякую роль в ответе на лучевое воздействие. В одних случаях повышение р53 увеличивает чувствительность К облучению, в других показана корреляция между повышением p53 и радиорезистентностью [Palazzo J.P. et al., 1997]. При слабых воздействиях р53 может выступать фактором выживания, способствуя репарации повреждений ДНК, поэтому нокаут TP53 в клетках аденокарциномы кишки (линия НСТ116) приводил к повышению чувствительности клеток к облучению и «митотической катастрофе» - аберрантной сегрегации хромосом, завершающейся гибелью. Существенное увеличение количества клеток, подвергающихся митотической катастрофе, наблюдалось В облученных также клетках фибросаркомы человека НТ1080 после инактивирования р53 доминантнонегативным мутантом [Gudkov A.V., Komarova E.A., 2003].

Транскрипционные факторы Slug и Snail регулируют эпителиальномезенхимальный переход (ЭМП) и инвазию опухолевых клеток в подлежащие ткани [Muller P.A. et al., 2011]. Группа исследователей из Национального университета Сеула обнаружила, что p53 индуцирует деградацию Slug и Snail посредством Mdm2-опосредованного убиквитинирования [Lim S.O. et al., 2010]. Важно, что активность Snail зависит от статуса p53. Так, мутантные формы p53 вызывают гиперэкспрессию Snail и Slug, что имеет отношение к приобретению радиорезистентности клеток рака яичников: эти белки усиливают выживаемость

клеток-предшественников за счет активации пути SCF/c-Kit [Kurrey N.K. et al., 2009].

Рою-подобная киназа 3 (PLK3) – один из компонентов регуляторных сигналов, опосредуемых p53. PLK3 - серин-треониновая протеинкиназа, партнерами которой являются p53, Chk2 и CDC25C в ответ на повреждения ДНК. p53 может связываться с промотором *PLK3* и индуцировать экспрессию ее гена, после чего происходит задержка в G_2/M и остановка клеточного цикла. Другой ген, регулируемый посредством p53 — *GPX1*, кодирует антиоксидантный белок глутатионпероксидазу. После облучения клетки накапливают высокоактивные свободные радикалы кислорода. Благодаря индукции *GPX1* и быстрому катаболизму H₂O₂, p53 может защищать клетки от окислительного повреждения, сопровождающего лучевое воздействие [Jen K.Y., Cheung V.G., 2005; Budanov, 2014; Deng W. et al., 2022]. Здесь проявляется двойственность роли p53 при лучевых воздействиях: в одних ответах этот белок защищает клетки, в других – способствует гибели.

Халакли и соавт. выявили, что в сублинии аденокарциномы кишки с нефункционирующим p53 после облучения снижена активность теломеразы, а в исходной изогенной линии (p53^{+/+}) повышена. Обратный эффект наблюдается у каталитической субъединицы теломеразы - TERT. После облучения активность TERT снижается при увеличении p53, при этом в клетках p53^{-/-} активность TERT повышена. В то время как облучение не изменяет активность теломеразы, у клеток с нормально функционирующим p53 наблюдается ускоренное старение. Таким образом, в облученных клетках активность теломеразы и остановка клеточного цикла в G₁ регулируются в зависимости от статуса p53 [Halacli S.O. et al., 2013].

Не менее важные особенности регуляции клеточного цикла показаны на клетках соединительной ткани. МЕГ (эмбриональные фибробласты мыши) с $p53^{+/+}$ накапливались в фазе G₁ после облучения (5 Гр) – активировался p53-зависимый промотор гена *CDKN1A*. Однако облученные клетки с нокаутированным *TP53* не подвергались апоптозу, а останавливались в премитозе

[Pohl F. et al., 2010]. В ТР53^{-/-} клетках p21 и Cdc25 регулировали p53-независимую остановку в G_2 [Attardi L.D., 2005].

Таким образом, регуляция мутантных форм p53 происходит через множество путей, в некоторых случаях неочевидных. Белки этого семейства опосредуют каскады, регулирующие становление радиоустойчивых фенотипов или гибель облученных клеток. При комбинировании препаратов платины и ингибиторов mTOR или иных блокаторов внутриклеточных сигналов открываются возможности модулирования семейства p53 и усиления ответа на ионизирующее излучение.

1.5. Становление радиорезистентности клеток

Остается нерешенной проблема устойчивости опухолевых клеток к ионизирующему воздействию – как первичной, исходной, характерной для некоторых типов/локализаций опухолей, так и приобретенной в процессе лечения. Как лекарственная резистентность, нередко образующаяся И В ходе химиотерапии, устойчивость к лучевому воздействию – неутешительный фактор заболевания. Причины устойчивости к течения лучевым воздействиям многообразны, не представляется возможным описать их в рамках одной работы; в этой главе анализируются связанные с белком р53 молекулярные механизмы, формирующие комплексный ответ опухолевых клеток на терапевтическое излучение с последующим развитием резистентности. Клинически важно, чтобы ответ приводил к гибели клеток, а не к «ускользанию», результатом которого может стать выживание клеток и формирование рецидивной радиоустойчивой опухоли.

1.5.1. Радиорезистентность, опосредованная белками семейства р53

Первые работы по изучению роли p53 в радиорезистентности опухолевых клеток начались с исследований Дж. М. Ли и А. Бернштейна, использовавших трансгенных мышей с мутациями p53^{Pro193} и p53^{Val135} и показавших, что экспрессия обоих мутантных вариантов гена *TP53* значительно увеличивает

устойчивость Этим гемопоэтических клеток к гамма-излучению. продемонстрирована связь мутаций p53 с радиорезистентностью [Lee J.M., Bernstein A., 1993]. Позднее исследованы радиочувствительность линий фибробластов эмбриона крысы (REF), трансфецированных мутантной формой *p53* (*МТр53*^{Pro193}) отдельно или в комбинации с онкогенами *H-Ras* и *E7*. Результаты с трансфекцией р53^{*Pro193*} подтвердили предыдущие исследования повышения радиоустойчивости. Котрансфекция мутантных генов TP53 и H-Ras или трансфекция р53^{Pro193}, H-Ras и E7 приводили к появлению клонов с ещё более высокой радиорезистентностью и гиперэкспрессией мутантного p53 [Bristow R.G. et al., 1994].

Линии клеток аденокарциномы яичников SKOV-3 и CaOV-3 проявляли радиорезистентность при гиперэкспрессии мутантного р53, при этом облучение не приводило к активации и накоплению мутантной формы р53. Оказалось, что регулируемая посредством p53 экспрессия Bcl-2 в этих линиях связана с устойчивостью к излучению, а также с чувствительностью к цисплатину. вызывающие повышение Вероятно, мутации p53, количества белка И радиорезистентность, связаны с повышенной стабильностью p53 И блокированием клеточного цикла; у клеток появляется время на репарацию повреждений ДНК [Concin N. et al., 2000].

На клетках меланомы показано, что Chk2/Hcds1-независимый сигнальный путь повреждения ДНК, дефосфорилирующий Ser376 в С-концевой области p53, приводит к повышенной активности р53 при облучении. В клетках с фосфорилирование Ser376 функционирующим p53 не регулируется повреждением ДНК, и радиорезистентность не возникает. Напротив, дефекты вышележащих механизмов активации р53 в ответ на повреждение ДНК, например, мутации Chk2/hCds1, не позволяющие фосфорилировать Ser376 p53 в ответ на облучение, связаны с становлением радиорезистентности меланомы. Это же свойство наблюдалось у мутанта р53, не способного взаимодействовать с белком 14-3-3 [Palazzo J.P. et al., 1997].

В кооперации с p53 ядерный белок Ki-67, экспрессирующийся в пролиферирующих клетках и не функционирующий в покоящихся (G₀), также является предиктором радиорезистентности. В образцах плоскоклеточного рака органов головы и шеи уровень экспрессии р53 коррелирует с отсутствием ответа опухолей на лучевую терапию. Сочетание накопления р53 и низкого уровня Кі-67 связано с рецидивированием у пациентов с ранними стадиями заболевания. Таким образом, p53 и Ki-67 могут играть ключевую роль в выборе стратегий радиотерапии для пациентов с опухолями органов головы и шеи [Couture C. et al., 2002]. Множественные мутации, включающие изменения в р53-зависимых проапоптотических белках Bcl-2, PUMA И Bax, усиливают радио-И химиорезистентность [Perri F. et al., 2015].

Активность тирозинкиназы фокальной адгезии FAK повышена при различных опухолях. При нокауте FAK в линии плоскоклеточного рака кожи облучение подавляет транскрипцию *CDKN1A* и других генов-мишеней p53, опосредующих остановку клеточного цикла и репарацию повреждений. Подавление активации *TP53* и *CDKN1A* способствовало радиосенсибилизации клеток; этого не наблюдалось при интактной FAK [Graham K. et al., 2011]. Эксперименты по ингибированию FAK в p53-негативных клетках карциномы лёгкого показали обнадеживающие результаты: значительно снижались миграция и инвазия *in vitro*, наблюдалась тенденция к повышению выживаемости *in vivo* [Dragoj M. et al., 2017]. Вероятно, модулирование активности FAK в комбинации с облучением может оказаться перспективным.

Гиперэкспрессия и накопление p53 в клетках рака эндометрия обусловлена, в частности, тем, что мутантный p53 рефрактерен к убиквитин-опосредованной протеасомной деградации. При одновременном накоплении p53 и фосфатазы PTEN наблюдается нечувствительность клеток эндометрия к лучевой терапии, что сопряжено с прогрессированием заболевания [Akiyama A. et al., 2019].

Поскольку ионизирующее излучение вызывает окислительный стресс [Yoshida T. et al., 2012], АФК важны в лучевом повреждении митохондрий. Активация митохондриального BNIP3 - проапоптотического белка семейства Bcl-

2, регулирующего генерацию АФК в облученных клетках и митофагию, не происходила в клетках с нефункционирующим p53. Так p53 выступает как ключевой механизм в регуляции BNIP3; отсутствие функционирующего p53 может опосредовать выживаемость опухолевых клеток при облучении за счет поддержания целостности митохондрии [Chang H.W. et al., 2019, Zhao Q. et al., 2022]. Статус p53 оказывается важным биомаркером прогнозирования терапевтической ценности препаратов, мишени которых – митохондриальные белки.

О роли р63 и р73 в формировании фенотипов радиорезистентности известно недостаточно. Поскольку в определенных случаях белки семейства заменяют или дополняют друг друга, можно предположить, что р63 и р73 также могут регулировать устойчивость к облучению с использованием механизмов, схожих с р53. Действительно, группой Moergel [Moergel M. et al., 2010] исследован р63 в образцах плоскоклеточного рака слизистой оболочки полости рта. Экспрессия трансактивационной формы *TAp63* ДО лечения является маркером радиорезистентности; уровни *TAp63* ассоциированы высокие с низкой эффективностью лечения и неблагоприятным прогнозом [Somerville T.D. et al., 2018; Ding R. et al., 2017]. Эти результаты подтверждаются исследованиями биоптатов 33 пациентов с плоскоклеточным раком головы и шеи, где повышенная экспрессия р63 опухолях до также В лечения являлась предиктором радиорезистентности, но требует изучения на большей когорте пациентов [Moergel M. et al., 2010].

В другой работе исследовали экспрессию изоформы $\Delta Np63a$ при облучении линий плоскоклеточного рака органов пищеварительного тракта (PCI-I-1, PCI-13, SCC-68 и SCC-4) и первичных кератиноцитов слизистой оболочки полости рта. Во всех линиях уровень экспрессии $\Delta Np63a$ различался в зависимости от дозы облучения. Нокдаун $\Delta Np63$ с помощью siRNA приводил к усилению чувствительности к облучению [Moergel M. et al., 2014]. Однако показан и обратный эффект: экспрессия *TAp73* и каспазы 7 в клетках колоректального рака после облучения коррелировала с радиочувствительностью. Далее, с помощью микроРНК miR-622 блокировали ген *Rb1*. Потеря Rb1 ингибировала образование комплекса Rb-E2F1-P/CAF, что приводило к снижению *TAp73* и каспазы 7; клетки приобретали радиорезистентность [Ma W. et al., 2015].

Известно также, что в некоторых случаях при облучении клеток р63/р73 мутантной формой p53 не связываются с И могут активировать проапоптотические гены, вследствие чего клетки выживают. Для повышения ингибиторы p63/p73 используют мутантных p53, активности форм гиперэкспрессию р63/р73 или нарушение физического взаимодействия между семейства с помощью пептидометиков или низкомолекулярных белками соединений [Li Y., Prives C., 2007; Johnson J. et al., 2005].

1.5.2. Пути преодоления радиорезистентности при модуляции белков семейства p53

Модуляция р53. Основные подходы к модуляции р53 для радиосенсибилизирующего эффекта обобщены на рисунке 4 и включают:

1. Низкомолекулярные стабилизаторы p53 [Doveston R.G. et al., 2017];

2. Модуляторы шаперонов/стабилизаторы дикого и мутантного p53 [Li C., Xiao Z.X., 2014];

3. Регуляторы ЕЗ-убиквитинлигаз [Li C. et al., 2022; Mohibi S. et al., 2022];

4. Модуляторы компонентов p53 сигнального пути (например, CDK, Bcl2) [Chen M. et al., 2020]

Рисунок 4. Способы усиления чувствительности опухолевых клеток к ионизирующему излучению при модуляции белков семейства p53. А) Модуляция p53 посредством низкомолекулярных стабилизирующих молекул и шаперонов. В) Регуляция p73 при действии на белки семейства Snail и E3-убиквитинлигазы (MDM2, ITCH). С) Воздействие на изоформы p63 через Pt-содержащие соединения, низкомолекулярные стабилизаторы и активность убиквитинлигаза (MDM2, FBXW7). Объяснения в тексте

Одним из примеров низкомолекулярных стабилизаторов является стиктиновая кислота, восстанавливающая функции p53, связываясь с мутантной формой [Wassman C.D. et al., 2013]. Подобным действием обладают и соединения на основе карбазола. Так, PK083 связывается с мутантной формой p53^{Y220C} и восстанавливает его транскрипционную активность, приводя к апоптозу [Joerger A.C., Fersht A.R., 2016; Bauer M.R. et al., 2020; Synnott N.C. et al., 2020]. Аналоги хиназолина (2-стирил-4-аминохиназолин, CP-31398) [Wang W. et al., 2020; Liu L. et al., 2020; Wei X.W. et al., 2020] реактивируют p53. Алкилирующие агенты участвуют в восстановлении структуры белка, непосредственно связываясь и модифицируя мутантные формы [Loh S.N., 2020]. Такие p53-восстанавливающие

агенты — PRIMA-1 и его более эффективный аналог PRIMA-1Met (APR-246). В превращаются клетках эти соелинения в активное соелинение метиленхинуклидинон (MQ) - акцептор Михаэля, ковалентно связывающийся с остатками цистеина в ДНК-связывающем домене p53. Cys277 важен для MQопосредованной термостабилизации мутантов p53^{R273H}, тогда как Cys124 необходим для APR-246-опосредованного функционального восстановления мутантного р53^{R175H} в опухолевых клетках и нормализации активности белка дикого типа. Эти исследования особенно важны для рационального дизайна молекул, мишенью которых предполагается p53 [Zhang Q. et al., 2019; Duffy M.J. et al., 2014; Ramraj S.K. et al., 2020].

Регуляция активности р53 может также осуществляться опосредованно через стабилизаторы нормальной или мутантных форм. Blanden и соавт. показали, соединение ZMC1 (NSC319726) действует что низкомолекулярное как металлошаперон и восстанавливает функции p53^{R175H} [Blanden A.R. et al., 2015; Garufi A. et al., 2015]. В случае стабилизации мутантных форм p53 посредством Hsp90 для сенсибилизации клетки к химио- и радиотерапии необходимо подавить активность указанного шаперона. Это достигается использованием ингибиторов Hsp90 (Ganetespib и Geldanamycin), что позволяет подавлять пролиферацию опухолевых клеток с мутантным p53. AUY922 и другие «кандидаты» в лекарства дестабилизируют мутантный белок через подавление шаперона [Li C. et al., 2014; Alexandrova E.M. et al., 2015; McLaughlin M. et al., 2017; Mantovani F. et al., 2019]. Один из представителей класса статинов - церивастатин - ингибирует мевалонатный путь. Это соединение через ингибирование HMG-CoA-редуктазы (фермента мевалоновой кислоты) активность синтеза уменьшает гистондеацетилазы HDAC6, что приводит к диссоциации комплекса Hsp90 с мутантным р53 [Ingallina E. et al., 2018]. Можно предположить, что дестабилизация мутантного р53 и восстановление функций р53 повысят чувствительность клеток к облучению.

Разрабатываются соединения, регулирующие взаимодействие Е3-лигаз и р53. Среди многочисленных разобщителей взаимодействия Mdm2-p53

общепризнано семейство цис-имидазолинов (нутлинов). AMG-232 проходит клинические испытания [Gluck W.L. et al., 2020]. Высокий терапевтический потенциал имеют и антрахиноны, активирующие p53 сигналинг через подавление Mdm2 [Anifowose A. et al., 2020a; 2020b]. Разнообразие ингибиторов Mdm2 велико и включает генистеины, куркумины, гинзенозиды, SP141 и двойные ингибиторы NFAT1-Mdm2. Так, куркумин - природное соединение с антиоксидантными свойствами - может стабилизировать p53 через формирование комплекса p53 с (NAD(P)H:хинон оксидоредуктазой 1 [Patiño-Morales C.C. et al., 2020], а генистеин - усиливать гибель клеток через p53-зависимый апоптоз [Morris S.M. et al., 1998; Wang W. et al., 2020; Rasafar N. et al., 2020]. В качестве терапевтической мишени рассматривают USP14 — активатор сигналосомы COPS5, усиливающий активность E3-лигазы — и подбирают для нее ингибиторы, например, IU1 и AP15 [Ma Y.S. et al., 2020].

Наряду с химиотерапевтическими воздействиями известны и другие: применение генной инженерии, комплексное воздействие на клеточный метаболизм, что может восстанавливать или обходить нарушения функций мутантного p53 через регулирование метаболизма опухолевых клеток. В клетках с интактным p53 АТФ синтезируется путем окислительного фосфорилирования. Потеря же нормальных функций p53 приводит к зависимости клетки от гликолиза; клетки получают возможность выживать в условиях гипоксии. Недавние результаты свидетельствуют о том, что с помощью ингибитора гликолиза можно повысить чувствительность опухоли к радиотерапии [Wilkie M.D. et al., 2020].

Перечисленные выше стратегии можно использовать для p73 и p63 – например, регулировать активность E3-лигаз. E3-лигаза ITCH негативно регулирует p73, её нокаут с помощью сочетания наночастиц и siRNA повышал стабилизацию p73 в клетках, мутантных по p53 [Meng J. et al., 2020]. Соединения, которые регулируют непосредственно активность p53, могут оказаться эффективными в случаях p63 и p73. Куркумин - стабилизатор p53 - активирует экспрессию *TP73* [Patiño-Morales C.C. et al., 2020; Huang L. et al., 2017].

Метформин через активацию АМФ-активируемой протеинкиназы АМРК влияет на все три белка семейства p53: повышает p53 и p73, при этом понижает пронкогенную форму p63 (Δ Np63 α) [Yudhani R.D. et al., 2019; Yi Y. et al., 2019]. Продигиозин положительно влияет на экспрессию *TP53*, активируя его репортер посредством индукции p73 и снижения онкогенного Δ Np73, являющегося супрессором гена *TP53* [Prabhu V.V. et al., 2016], а соединение NSC59984 приводит к дестабилизации мутантного p53 и его деградации, при этом вызывается p73-зависимый апоптоз [Zhang S. et al., 2015].

Помимо регуляторов, действующих на все белки семейства, предложены агенты, селективные к отдельным белкам. Abrus agglutinin (AGG) - растительный лектин, ингибирующий трансляцию - приводит к индукции p73 [Sinha N. et al., 2017]. Индуцированный лектином p73 подавляет экспрессию Snail и ингибирует ЭМП в клетках плоскоклеточного рака гортани. Примечательно, что AGG способствовал перемещению Snail из ядра в цитоплазму и запускал его деградацию посредством убиквитинирования. Таким образом, AGG стимулирует р73 и супрессирует EGF-индуцированный ЭМП и инвазивность, ингибируя путь ERK/Snail [Sinha N. et al., 2019]. Протопорфирин IX (PpIX), метаболит аминолевулиновой кислоты, применяемый в фотодинамической терапии рака, стабилизирует ТАр73 и активирует ТАр73-зависимый апоптоз в р53-негативных клетках. Механизм активации TAp73 осуществляется через нарушение взаимодействий TAp73/MDM2 и TAp73/MDMX и ингибирование деградации ТАр73 с помощью убиквитинлигазы ITCH [Sznarkowska A. et al., 2018]. свойствами обладает И 1-карбальдегид-3,4-диметоксиксантон, Подобными стабилизируя ТАр73 через ингибирование его связывания с Mdm2 [Gomes S. et al., 2019]. Диаллилдисульфид (DADS) увеличивает чувствительность к ионизирующему излучению, повышая уровень TAp73 и понижая $\Delta Np73$ Опосредованный DADS баланс TAp73/ Δ Np73 связан изоформы. c радиочувствительностью клеток рака шейки матки [Di C. et al., 2015].

Описаны результаты использования микро-РНК для модуляции p63 (Novelli F. et al., 2016). miR-130b активирует противоопухолевую изоформу p63 (TAp63),

непосредственно связываясь с белком [Gunaratne P.H. et al., 2019]. Важно уделить особое внимание изучению ответа p63 на облучение и приобретение p63опосредованной радиорезистентности, а также подбору таргетных препаратов к соответствующему гену/белку для создания новых методов терапии, особенно для пациентов с кросс-резистентностью к химиопрепаратам.

Разработка способов таргетной доставки на основе липосом и наночастиц представляется важным и малоизученным вопросом. Мезопористые наночастицы UCNPs(BTZ)@mSiO2-H2A/p53, которые, помимо кДНК p53, содержат ингибитор протеосом бортезомиб, повышали чувствительность клеток к этому препарату и демонстрировали более выраженный апоптоз в сравнении с контролем без наночастиц [Rong J. et al., 2020]. Не только фрагменты генов могут быть доставлены в клетки, но и антагонисты E3-лигаз p53 Mdm2 и MdmX в составе наночастиц золота [He W. et al., 2020]. Также низкомолекулярные соединения VIP116 и PM2, ингибирующие взаимодействия p53-Mdm2 и p53-Mdm4, липодисках наноразмерных двухслойных доставлялись В структурах, стабилизированных в плоские круглые формы липидами, связанными с полиэтиленгликолем - и значительно снижали жизнеспособность опухолевых клеток [Lundsten S. et al., 2020]. Подобный подход может быть применен для усиления гибели опухолевых клеток при ионизирующем излучении.

1.6. Взаимодействие белка p53 и циклинзависимых протеинкиназ (CDK): связь при облучении

Среди механизмов, влияющих на выживаемость клеток при ионизирующем излучении, одним из слабоизученных компонентов остаётся группа циклинзависимых киназ (cyclin dependent kinases, (CDK). Циклинзависимые киназы представляют собой серин/треонинкиназы, активность которых зависит от их внешнего белкового «партнера» – циклина. В регуляцию клеточного цикла вовлечены Cdk1, Cdk2, Cdk4 и Cdk5. Многие киназы, обнаруженные позднее (среди них Cdk7, Cdk8/19, Cdk9, Cdk11 и др.), являются транскрипционными регуляторами [Malumbres M., 2014]. Установлено, что – в зависимости от типа

опухолей – радиорезистентный фенотип может быть связан с Cdk1, Cdk2 и Cdk4/6, а также с соответствующими циклинами B, A, D [Liu R. et al., 2015; Wang J. et al., 2016; Shimura T. et al., 2012; Hagen K.R. et al., 2013, Al-Rashdan A. et al., 2022]. Таким образом, при ответах на ионизирующее воздействие прослеживается чёткая функциональная связь между циклин-зависимыми киназами и p53, в результате чего происходит остановка клеточного цикла в сверочных точках, последующий запуск репарации или апоптоза. Есть ли возможность повысить чувствительность p53-позитивных клеток при модуляции циклинзависимых протеинкиназ?

1.6.1. Циклинзависимые протеинкиназы как модуляторы р53

Модуляция p53 и компонентов его сигнального пути (например, INK4A-Mdm2) через циклинзависимые протеинкиназы может стать одной ИЗ многообещающих стратегий для борьбы со злокачественными опухолями [Lee W.P. et al., 2015; Manohar M.S., 2022]. При использовании росковитина – ингибитора CDK1 и CDK2 - удалось вызвать апоптоз клеток с мутантным p53 [Jabbour-Leung N.A. et al., 2016; Gary C. et al., 2016]. Химические ингибиторы mTOR (mammalian target of rapamycin), циклинзависимых протеинкиназ CDK1, СDК7, СDК9 и поли(АДФ-рибозо)полимеразы (PARP) также влияют на функции р53. Росковитин и флавопиридол увеличивают уровень р53 в клетках, снижая транскрипцию MDM2, вероятно, за счет ингибирования CDK7 или CDK9 компонентов общего транскрипционного аппарата [Stewart-Ornstein J., Lahav G., 2017]. Для исследования влияния ингибиторов CDK флавопиридола, THZ1 или YKL-1-116 на транскрипцию MDM2 и индукцию p53 использован репортер Mdm2:T2A-GFP и оценена его трансактивация в клетках рака молочной железы (линия MCF-7). Флавопиридол и росковитин увеличивали трансактивацию p53 вследствие истощения Mdm2. Хотя в этих ситуациях p53, вероятно, неактивен поскольку транскрипция В присутствии ингибитора транскрипционных протеинкиназ нарушена или отсутствует - при удалении ингибиторов CDK7 и CDK9 (THZ1 и YKL-1-116, соответственно) p53 активирует мишени DR5, Fas, p21

- и усиливает противоопухолевый эффект облучения [Bagashev A. et al., 2013; Kalan S. et al., 2017].

При действии динациклиба (ингибитор CDK1, CDK2, CDK5, CDK9 и CDK12) также наблюдали переключение на p53-зависимый апоптоз [Mita M.M. et al., 2017; Desai B.M. et al., 2013]. Кроме того, AT7519 (ингибитор CDK1, CDK2, CDK4, CDK6 и CDK9) и SNS-032 (ингибитор CDK2, CDK7 и CDK9) повышают чувствительность к облучению через активацию p53 и подавление Chk1 [Kang M. et al., 2018]. Соединение YM155 влияет на регуляцию клеточного цикла через Chk1 с Chk2, стабилизируя p53 и p21 [Sim M.Y. et al., 2018]. Тиазольное производное хинона RO-3306 - ингибитор CCNB1/Cdk1 – вызывало p53-опосредованный апоптоз клеток нейробластомы при интактном p53 [Schwermer M. et al., 2015]. Лютеолин, который приводит к деградации Mdm2, способен ингибировать циклин D1 и CDK2/4, тем самым повышая уровень p53 в клетке [Ambasta R.K. et al., 2019]. Таким образом, комбинация ингибиторов CDK с лучевой терапией для повышения индукции p53 и активации p53-зависимого апоптоза выглядит перспективной. На рисунке 5 представлены формулы перечисленных ингибиторов CDK.

Рисунок 5. Терапевтически перспективные ингибиторы циклинзависимых протеинкиназ, модулирующие активность р53

В этом контексте в стороне остаются киназы CDK8 и CDK19, не имеющие прямого отношения к регуляции клеточного цикла, но играющие важную роль в перепрограммировании транскрипции. Эти киназы связаны с комплексом Mediator и функционируют в комплексах с циклином C (CCNC), MED12 и MED13 [Dannappel M.V. et al., 2019; Fant C.B., Taatjes D.J., 2019]. В клетках опухолей толстой кишки, молочной, поджелудочной и предстательной желез CDK8 и CDK19 являются ко-регуляторами транскрипции [Roninson I.B. et al., 2019; Liang J. et al., 2018]. Важно, что фармакологическое ингибирование CDK8/19 нетоксично для взрослого организма, что обусловливает перспективность этих мишеней для противоопухолевой терапии. Связаны ли CDK8/19 и p53?

1.6.2. Регуляция р53 посредством СДК8/19 – перспективный подход

Ранее, при изучении стимуло-специфичных мишеней CDK8 было показано, что субъединицы модуля Медиатор - CDK8, MED12 и CCNC - рекрутируются в локус p21 при его активации белком p53. Эксперименты с малыми интерферирующими РНК показали, что CDK8 может выступать одновременно как коактиватор p53 и как фактор, усиливающий индукцию самого p53 [Donner A.J. et al., 2007; Galbraith M.D. et al., 2010], однако точные молекулярные механизмы не установлены. Противоположный результат показан при изучении паралогичной киназы CDK19: сравнительный анализ секвенирования РНК клеток остеосаркомы SJSA (CDK8-негативные) с нокдауном CDK19 показал снижение экспрессии митотических генов и активацию р53-регулируемых генов. Клетки SJSA с нокдауном CDK19 обрабатывали разобщителем взаимодействия Mdm2р53 нутлином-3 (стабилизирует р53). Оказалось, что CDK19 способствует репрессии р53 в покоящихся клетках, но после обработки 5-фторурацилом выраженная индукция p53-зависимых генов возвращалась [Audetat K.A. et al., 2017; Dannappel M.V. et al., 2019; Zhang Z. et al., 2022]. Судя по всему, помимо основной функции факторов перепрограммирования транскрипции, CDK8/19 могут быть задействованы в различных ответах на клеточный стресс и однако их роль при облучении и активации р53повреждения ДНК,

ассоциированных факторов изучена недостаточно [Nemet J. et al., 2014; Nakamura A. et al., 2018]. Настоящая работа посвящена этим взаимодействиям, затрагивает анализ на цитологическом и молекулярном, транскрипционном и трансляционном уровнях.

1.7. Перепрограммирование транскрипции как подход к радиосенситизации опухолевых клеток

Несмотря на многолетние исследования, значение р53 как молекулярной лучевой мишени И прогностического маркера терапии В остается противоречивым. Ситуация осложняется вариабельностью р53-зависимых ответов при облучении разных опухолей, даже в линиях клеток одной тканевой принадлежности [Viktorsson K. et al., 2005]. Тем не менее, среди генетических маркеров прогноза острой токсичности или ответа на лучевую терапию в нативных опухолях p53 отмечен как информативный [Mayer C. et al., 2011]. С помощью анализа экспрессии р53 и ряда других генов удалось предсказать величину поглощенной дозы, при которой развивается тот ли иной ответ опухоли [Paul S. et al., 2011; Akiyoshi T. et al., 2012]. Успехом применения терапии с воздействием на p53 может считаться гендицин (Ad-p53) - рекомбинантный аденовирус, сконструированный для экспрессии дикого типа р53 в опухоли, где этот белок мутирован. Ad-p53 применяется в клинике и хорошо сочетается с радиотерапией, особенно при лечении рака молочной и поджелудочной желез, шейки матки и яичников [Zhang H. et al., 2018]. Именно поэтому интересен поиск механизмов направленной супрессии / активации р53-зависимых механизмов при минимизации негативных эффектов, не связанных с ответами на повреждение ДНК. В этом смысле стратегия повышения чувствительности опухолевых клеток к ионизирующему излучению при модуляции p53 И запуске p53-CDK8/19 через терапевтически ассоциированного апоптоза является привлекательным и новым подходом.

Остаётся нерешённой проблема p53-негативных опухолей. Одним из путей, позволяющих обойти нефункционирующие p53-зависимые механизмы, является
использование наноструктурированных частиц серебра, способных вызвать митохондриальный стресс и апоптоз независимо от p53; предстоит установить, можно ли комбинировать такие материалы с облучением [Swanner J. et al., 2015; Kovács D. et al., 2016]. Наконец, обоснованными следует считать воздействия на p63 и p73, если их функции сохранены в p53-негативных опухолях. Какова роль CDK8/19 в p53-негативных клетках?

Глава 2. МАТЕРИАЛЫ И МЕТОДЫ

2.1. Клеточные культуры и условия культивирования

Использованы линии трансформированных клеток человека: HCT116 (аденокарцинома толстой кишки) с интактным p53; HCT116p53KO - сублиния HCT116 с делецией обоих аллелей гена *TP53^{-/-}* (получена в лаборатории В. Vogelstein, Johns Hopkins University, США), а также сублиния HCT16CDK8KO с инактивированным (технология CRISPR/Cas9) геном *CDK8^{-/-}* (получена в лаборатории И. Ронинсона, University of South Carolina, США). Для независимой валидации использован эпителий почки эмбриона человека (линия HEK293 и сублиния с нокаутом CDK8). Клетки культивировали в модифицированной Дульбекко среде Игла (DMEM, Биолот, Россия) с 2 мМ *L*-глутамина, 5% эмбриональной сыворотки теленка (РАА, США) и 100 ЕД/мл гентамицина. В экспериментах использовали клетки в логарифмической фазе роста (не более 15 пассажей). Остальные реактивы получены из фирмы Sigma, США кроме специально оговоренных случаев.

2.2. Низкомолекулярные модуляторы перепрограммирования транскрипции и внутриклеточного сигналинга

Ингибитор CDK8/19 сенексин Б (СенБ, SnxB) использовали в конечных концентрациях 0,5-1 мкМ, рекомендованных разработчиком (И. Ронинсон, университет штата Южная Каролина и компания Senex Biotechnology, г. Коламбия, США). Ингибитор CDK8 BI1347 (Selleckchem, CША) добавляли в конечной концентрации 200 нМ. Формулы соединений представлены на рисунке 6. Для инактивации CDK8/19 также использована система PROTAC – комбинированная молекула, которая вызывает селективный протеолиз белкамишени (получена в лаб. И. Ронинсона, который инициировал процедуру патентования; формула не приводится). MRT67307 - ингибитор протеинкиназ TBK1 и IKKε (активаторов NFкВ) –использовали в концентрации 200 нМ. Препараты добавляли в культуральную среду за 3 ч до облучения. Ингибиторы присутствовали в среде только во время облучения.

Рисунок 6. Структурные формулы селективных ингибиторов CDK8/19 сенексина В и BI-1347.

2.3. Воздействие ионизирующего излучение на клетки

Для облучения опухолевых клеток рентгеновскими фотонами использовали радиотерапевтический аппарат РУМ-17, предоставленный для работы Военно-Медицинской Академией имени С.М. Кирова. В экспериментах использованы различные дозы от 2 до 10 Гр в зависимости от условий и комбинаций. Использовались следующие параметры облучения: напряжение на трубке 180 кВ, ток 10 мА, фокусное расстояние – 50 см, фильтр – 1 мм Al; 0.5 мм Cu, мощность дозы – 0,32 Гр/мин. Для валидации и сопоставлении значений эффективных доз, используемых в клинике, использовался дозиметрический контроль – дозиметр ИД-11, и показания доз с прибора ГО-32.

2.4. Исследование жизнеспособности клеток (МТТ-тест)

Для исследования клеток на жизнеспособность использовали метод МТТ [Mosmann T., 1983]. Клетки открепляли от субстрата раствором Версена, подсчитывали в камере Горяева и суспендировали в культуральной среде до концентрации 25 000 клеток/мл. В лунки 96-луночного планшета (Nunc, Дания)

вносили 200 мкл клеточной взвеси (~5000 клеток) и инкубировали в течение суток. В день экспериментов готовили серийные разведения исследуемого препарата либо рассеивали клетки по дозам облучения. Из каждого разведения препарата получали требуемую конечную концентрацию в лунке в объеме 5-10 мкл. Клетки инкубировали с препаратом 72 часа. После окончания инкубации в лунки вносили 20 мкл водного раствора МТТ (Sigma, США; 5 мг/мл). Клетки инкубировали 2 часа до развития интенсивной темно-фиолетовой окраски клеток (формазан), удаляли культуральную среду. К клеткам добавляли 200 мкл диметилсульфоксида (ДМСО), суспендировали до гомогенности и инкубировали на шейкере 15 мин 350 об/мин. Оптическую плотность измеряли на спектрофотометре TECAN Infinite f50 при длине волны 570 нм, вычитая оптическую плотность при 690 нм.

2.5. Исследование клеточного цикла

Клетки после облучения ресуспендировали в лизирующем буфере (0,1% цитрата натрия, 0,3% NP-40, 50 мкг/мл РНКазы A, 50 мкг/мл пропидия иодида (BD Pharmingen, США). Лизаты тщательно перемешивали на Vortex. Распределение фаз клеточного цикла (по плоидности ДНК) анализировали на проточном цитофлуориметре CytoFlex B2-R2-V0 (США) в каналах PE или Rhodamine. Для исключения конгломератов клеток использовали двухмерную диаграмму PE-W против PE-A. Накапливали 20000 событий для каждого образца. Анализировали показатели в областях SubG₁, G₁ и G₂/M.

2.6. Выделение РНК из клеточных линий

Облученные и/или обработанные препаратом клетки в количестве 10⁶ оставляли на чашках Петри до достижения фазы роста, равной ~70-80% конфлюентности. После, клетки снимали раствором трипсина - Версена 1:1 в пробирки 15 мл. Клетки центрифугировали 5 минут, затем отбирали надосадочную жидкость и добавляли 0.8 мл тризола или реагента Extract RNA (Евроген, Россия) тщательно ресуспендировали. Добавляли 160 мкл хлороформа,

40

инкубировали 10 мин, центрифугировали 10 мин при 12000 об/мин. Отбирали водную фазу, переносили в эппендорфы с 500 мл изопропанола, встряхивали, инкубировали 10 мин, при комнатной температуре и центрифугировали при 12000 об/мин 10 мин. Далее отбрасывали надосадок, к осевшей РНК добавляли 500 мкл 70% этанола, центрифугировали при 12000 об/мин 5 мин. Отбирали этанол, к осадку РНК добавляли 20 мкл безнуклеазной воды. Оптическую плотность раствора РНК измеряли с помощью спектрофотометра Implen NanoPhotometer C (Implen, Германия). В обратную транскрипцию брали 0.5-1 мкг тотальной РНК.

2.7. ПЦР с обратной транскрипцией

Для проведения реакции обратной транскрипции брали такой объём раствора чистой РНК, в котором количество материала было бы не меньше 500 нг, к нему добавляли 1 мкл олиго dT 100 мкМ либо Random Hexamer primer (Thermo Scientific, США) 100 мкМ, после чего безнуклеазной водой доводили объём смеси до 9 мкл. Инкубировали 5 мин при 70°, переносили в лёд. Готовили реакционную смесь (H₂O; 5x ревертазный буфер; dNTP 5 мM; DTT 20 мM; MMLV ревертаза (Евроген)) на соответствующее количество проб. В эппендорфы с PHK добавляли по 11 мкл реакционной смеси, общий объём 20 мкл. Условия реакции: 25° -10 мин, 42° -50 мин, 70° -10 мин, 10° -10 сек.

2.8. Полимеразная цепная реакция (ПЦР)

По завершении обратной транскрипции готовили смесь для ПЦР: 10х Таqбуфер + (NaH₄)SO₄-MgCl₂ (Thermo Scientific, CША); прямой и обратный праймеры 10 мкМ каждого; 2 мМ смеси нуклеотидтрифосфатов; 25 мМ MgCl₂; Таq полимераза 5 U/мкл (Thermo Scientific, США); H₂O без нуклеаз. Вносили эту смесь в 0.5 мл эппендорфы в количестве 23 мкл / эппендорф, к ней добавляли по 2 мкл полученной кДНК. Также готовили пробы, состоящие только из ПЦР-смеси, без кДНК – отрицательный контроль. Условия амплификации:

- Этап 1 (1 цикл): 94°-3 мин, 60°- 40 сек, 72°-40 сек.
- Этап 2 (28-30 циклов): 94°-10 сек, 60°-10сек, 72°-20сек.

- Этап 3 (1 цикл): 72°-3 мин.
- Этап 4 (хранение): 4°.

2.9. ПЦР в реальном времени

Для проведения ПЦР в реальном времени готовили смесь для ПЦР, в состав которой входили: смесь 5х qPCR SYBR Green I (Евроген); прямой и обратный праймеры по 10 мкМ; H₂O без нуклеаз. После чего раскапывали в эппендорфы (0.5 мл) по 2 мкл кДНК, добавляли 23 мкл смеси для ПЦР. Объём смеси 25 мкл. Также готовили отрицательный контроль: пробу без добавления соответствующей кДНК. Условия амплификации:

- Этап 1 (1 цикл): 94°-3 мин, 60°- 40 сек, 72°-40 сек.
- Этап 2 (28-30 циклов): 94°-10 сек, 60°-10сек, 72°-20сек.
- Этап 3 (1 цикл): 72°-3 мин.
- Этап 4 (хранение): 4°.

После завершения реакций экспрессию продуктов определяли методом Δ Ct, где Ct (пороговый цикл) – это цикл, при котором уровень флуоресценции достигает определенной величины (заранее выбранного порога), а Δ – изменение экспрессии гена интереса относительно референсного гена, который выбран в качестве нормализации. В эксперименте для нормализации использовались транскрипты гена *GAPDH*. Во всех случаях изменения в экспрессии генов рассчитывались относительно интактного контроля, который был принят за единицу (1.0). Во всех группах отличия от контроля достоверны при р \leq 0.05 (двухфакторный ANOVA тест).

2.10. ПААГ-электрофорез и анализ белков (иммуноблоттинг)

Для определения изменения количества белков в клетках при воздействии излучения использовали метод иммуноблоттинга. Клетки рассеивали на 60 мм чашки Петри (300 000 клеток на чашку) и оставляли в инкубаторе на 24 ч для распластывания. После соответствующих воздействий клетки промывали холодным физиологическим буфером и лизировали на льду в 30 мин в буфере

RIPA (50 мМ Tris-HCl pH 7.4. 150 мМ NaCl; 1% NP-40; 0.25% дезоксихолата натрия) с добавлением 2 мМ фенилметилсульфонилфторида и смеси ингибиторов протеаз Protein Inhibitor Cocktail (Sigma, США). Лизаты центрифугировали 15 мин. при 1000g, 4°C.

Для измерения концентрации белка в лизатах использовали раствор Брэдфорда (Sigma, США) и предлагаемую производителем методику. Для построения калибровочной кривой использовались двухкратные серийные разведения бычьего сывороточного альбумина от 2 мг/мл до dH₂O (10 ступеней). Измерение оптической плотности проводили в 96-луночных планшетах (Eppendorf, США) на спектрофотометре TECAN Infinite f50 (США) при длине волны 595 нм.

Электрофорез белков проводили в полиакриламидном (ПААГ) геле с плотностью 8-14% в зависимости от молекулярной массы разделяемого белка в буфере, содержащем 375 мМ Трис-глицина рН 8.8 и 10% додецилсульфата натрия. Источник тока PowerPac (BioRad, США), напряжение 100 В. На дорожки геля вносили 35 мкг тотального белка. После электрофореза белки переносили на нитроцеллюлозную мембрану (Amersham, США) в трис-глициновом буфере, содержащем 20% метанола, при 300 мА в течение 1,5 ч. Мембрану выдерживали в 5% растворе обезжиренного сухого молока, растворённом в трис-буфере с добавлением 0.1% Tween-20 (TBST) для блокирования мест неспецифического связывания белков. В качестве внутреннего контроля использовали антитела к βактину в разведении 1:1000. Мембраны инкубировали с с соответствующими первичными антителами (1:500-1:2000 в TBST) при 4°С в течение ночи. Мембраны трижды отмывали в том же буфере с 0.1% Твин-20 в течение 5 мин. Для визуализации белков методом хемилюминесценции использовали вторичные антитела к IgG мыши или кролика (Amersham, США), конъюгированные с пероксидазой хрена. Разведения вторичных антител 1:1000 – 1:5000. После 1часовой инкубации мембраны отмывали в вышеуказанном буфере с 0,1% Твин-20 3x5 мин. Визуализацию белков проводили в растворе для хемилюминесценции (Раствор А - 68 мМ кумаровой кислоты в ДМСО; раствор В - 1.25 мМ люминол

(5-амино-2,3-дигидро-1,4-фталозиденион) в 0,1 М Трис-HCl pH 8.5, смешивая растворы 1:1, после чего детектировали с помощью гель-документирующей системы ChemiDoc Touch. Денситометрию для оценки относительного содержания белков проводили в программе ImageJ, инструмент Grey Mean Value Calculation.

2.11. Клоногенный анализ

Для изучения пролиферации и определения выживаемости одиночных опухолевых клеток после воздействия различными дозами излучения и/или препарата проводили клоногенный анализ. После облучения клетки открепляли 0,5 мМ раствором этилендиаминтетраацетата натриевой соли. В 100 мм чашки Петри высаживали по 200 клеток и инкубировали 14 сут при 37°C, 5% CO₂. После окончания инкубации удаляли среду и фиксировали клетки 96% ледяным метанолом 10 мин при 4°C. Удаляли метанол, вносили кристаллический фиолетовый на 10 мин при комнатной температуре, после чего отмывали дистиллированной водой 3 раза. Результаты фиксировали с помощью гельдокументирующей системы ChemiDoc Touch.

2.12. Цитохимическое определение активности β-галактозидазы

Для выявления ассоциированной со старением β-галактозидазы (SA-β-Gal) готовили 20-кратный раствор X-gal (5-бром-4-хлор-3-индолилβ-Dгалактопиранозид) путём растворения его в 1 мл диметилформамида. Клетки в 12луночных планшетах промывали 2-3 раза по 5 мин PBS, покрывали фиксирующим раствором (37% формальдегид, 50% глутаральдегид, dH₂O) на 10 мин при комнатной температуре и отмывали. Добавляли окрашивающий буфер (40 мМ лимонной кислоты/Na₂HPO₄ pH 6.0, 5 мМ K₃Fe(CN)₆, 5 мМ K₄Fe(CN)₆, NaCl, 2 мМ $MgCl_2 \times 6H_20$ ("ПанЭко") 0.15 M И 2.5 мМ бромхлориндолилгалактопиранозида (X-gal, Sigma-Aldrich) и оставляли при 37°С на 24 часа. Отбирали окрашивающий раствор, промывали клетки 3 раза PBS, добавляли 50% глицерол и хранили при 4°С. Анализ клеточного старения проводили путём подсчёта 100 произвольно выбранных клеток в 5-6 полях зрения микроскопа и деления количества окрашенных клеток на 100.

2.13. Статистическая обработка результатов

Статистическую обработку результатов проводили с помощью компьютерных программ Excel (Microsoft) и GraphPad Prism 7.0. Полученные значения представлены в виде среднего ± стандартное отклонение. Для данных ПЦР использовали одно- либо двухфакторный ANOVA тест. Разницу считали статистически значимой при р < 0.05 (*).

Глава 3. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

3.1. Выживаемость клеток после воздействия терапевтическими дозами облучения

Для подбора условий в экспериментах с ионизирующим излучением и анализа выживаемости клеток проводили оценку морфологии через 1-7 дней после облучения. В необлученных клетках морфологические изменения не наблюдалось на протяжении эксперимента. В облученных клетках уже на 3-й день отмечены выраженный блеббинг плазматической мембраны, сморщивание, конденсация и фрагментация ядер – признаки апоптотической гибели. На более поздних этапах – 5-7 сут – означенные изменения становились отчётливее, резко изменялась форма клеток, утрачивались адгезионные контакты (Рис. 7). Так как лоза 10 Гр оказалась летальной, ее не применяли В экспериментах продолжительностью более 5 сут.

Рисунок 7. Изменения морфологии облученных клеток HCT116. Линейка 100 мкм

С помощью МТТ-теста оценена выживаемость клеток НСТ116 при различных разовых дозах облучения (рис. 8). Через 24 ч выживаемость заметно снизилась только при 7 Гр и 10 Гр – на 20% и 35%, соответственно. Процент погибших клеток с нефункционирующим р53 оказался на 10% выше для обеих доз. На поздних сроках изменения более существенны: выживаемость клеток НСТ116 на 5-й день при облучении 2 Гр составила 90.6%, а клеток НСТ116р53КО - 53.5%, в то время как при 4 Гр выживаемость клеток с нормально функционирующим р53 была 64.4%, а нокаутов – 30.8%. Наконец, облучение 10 сублетальным: 22.5% для клеток НСТ116 и 10.5% для Γр оказалось НСТ116р53КО. Более низкую выживаемость облученных нокаутов по сравнению с линией НСТ116 (интактный р53) можно объяснить р53-зависимой активацией р21 в ответ на облучение и повреждение ДНК, что, в свою очередь, опосредует остановку клеточного цикла на границах G₁/S и G₂/M, предоставляя возможность репарировать повреждения и выжить. В клетках с нефункционирующим р53 нет блока клеточного цикла; клетки приходят к сверочным точкам с накопленными (нерепарированными) повреждениями и погибают.

Рисунок 8. Выживаемость (МТТ-тесты) облученных клеток с разным статусом р53. Представлены результаты трёх независимых экспериментов

Для дальнейшей работы выбраны оптимальные разовые дозы облучения – 2-4 Гр - для экспериментов, длительность которых превышает 24 часа; при

48

изучении транскрипционных и трансляционных ответов использовали дозы до 10 Гр. Следующим этапом стало установление механизмов гибели облученных клеток HCT116p53KO методом проточной цитофлуориметрии.

3.2. Изменения клеточного цикла

Для анализа клеточного цикла линии HCT116 (интактный p53) и сублинии HCT116p53KO (нокаут p53) клетки облучали дозами 2-4 Гр, ресуспендировали в лизирующем буфере и оценивали распределение фаз SubG₁ (апоптоз), G₁, S и G₂/M. Анализ проводили с помощью проточного цитометра CytoFlex B2-R2-V0 (США) при окраске йодистым пропидием в каналах PE или Rhodamine. На рисунке 9 видно, что в клетках HCT116 задержка в фазе G₂/M клеточного цикла обнаружена в дни 3-5. Так, на 3-й день процент клеток в фазе G₂/M составлял 29.5%, в то время как на 5-й день он вырос до 40.4% (при дозе 4 Гр). Фаза SubG₁ не превышала 10%, однако при 4 Гр увеличивалась до ~20%.

Рисунок 9. Распределение фаз цикла облученных клеток НСТ116

Напротив, больший процент апоптотических (SubG₁) клеток был обнаружен после аналогичного воздействия на клетки HCT116p53KO (Рис. 10). После облучения дозами 2 Гр и 4 Гр в фазе G₂/M на 3-й день оказалось всего 10.5% и 12.5%, соответственно, а на 5 день – 14%. В это же время апоптотическая фаза SubG₁ достигала 34% на 3-й день и 53% на день 5 после облучения. Это указывает на то, что инактивация p53 негативно влияет на выживание облученных клеток – не происходит p53-зависимой остановки клеточного цикла в контрольной p21зависисмой точке G2/M. Клетки с нарушениями ДНК проходят в митоз с последующей гибелью.

Рисунок 10. Распределение фаз цикла облученных клеток НСТ116р53КО

В таблице 1 представлены объединённые данные по распределению фаз клеточного цикла на 3-5 дни после облучения. Показаны апоптотическая фракция SubG₁ и контрольная точка G₂/M.

День 3				
Доза облучения	HCT116		НСТ116р53КО	
	$SubG_1$ (%)	G ₂ /M (%)	SubG ₁ (%)	G2/M (%)
0 Гр	8.6	14.6	6.5	10.4
2 Гр	14.0	18.2	23.2	10.6
4 Гр	17.9	29.5	34.4	12.5
День 5				
0 Гр	3.0	16.1	10.1	9.9
2 Гр	17.3	33.0	31.2	20.7
4 Гр	19.9	40.3	52.9	14.4

Таблица 1. Распределение фаз клеточного цикла (%) после облучения.

Можно предположить, что в облученных клетках HCT116 с интактным p53 повреждение ДНК активирует протеинкиназы Chk1/2, которые, в свою очередь – через индукцию p53 - стимулируют фосфатазу Cdc25. Накопленный p53 активирует ингибитор клеточного цикла p21, задерживая клетки посредством подавления Cdc25 и предотвращения перехода в G₂/M до завершения репаративных процессов. В p53-отрицательных клетках не происходит p21-зависимой остановки клеточного цикла в ответ на повреждение ДНК, и Cdc25 позволяет клеткам с нарушениями пройти через митоз, что приводит к апоптозу. Какие сигнальные каскады играют основную роль в этих событиях?

3.3. Экспрессия p53-ассоциированных генов в зависимости от дозы облучения и статуса p53

Следующим этапом являлось изучение молекулярных механизмов, ответственных за гибель / выживание опухолевых клеток при действии

облучения. Фиксировали как ранние эффекты после облучения (3-24 часа), так и поздние (3-5 дней). Первым шагом являлось исследование транскрипции. Анализ мРНК с помощью ПЦР в реальном времени показал, что активация гена *TP53* в клетках HCT116 происходит в первые часы после облучения и достигает максимума через 12 ч (усиление приблизительно в 9 раз при облучении 4 Гр и в 13 раз в ответ на 10 Гр по сравнению с необлученными клетками). Через 24 ч после облучения экспрессия *TP53* несколько снижалась: приблизительно в 7 (4 Гр) и 9 раз (10 Гр) (Рис. 11).

Рисунок 11. Уровни мРНК *ТР53* в облученных клетках. Представлены средние значения из 3-х экспериментов и доверительные интервалы. Контроль – необлученные клетки, экспрессия принята за 1. Во всех группах отличия от контроля достоверны при р ≤ 0.05 (однофакторный ANOVA)

Ген *CDKN1A*, кодирующий белок p21, играет важнейшую роль в ответе клеток на повреждения ДНК, в том числе при ионизирующем излучении (Huerta et al., 2013). Этот ген – транскрипционная мишень p53. Характер активации *CDKN1A* в облученных клетках схож с таковым для *TP53* (Рис. 12): максимум достигается к 12 часам. В это время увеличение мРНК *CDKN1A* достигает 4-6 раз. К 24 часам мРНК снижалась на ~20% от максимальных значений. Напротив, в

сублиниии с нефункционирующим p53 *CDKN1A* слабо отвечал на облучение: уровень активации не превышал 2.5.

Рисунок 12. Уровни мРНК гена *CDKN1A* (p21) в клетках HCT116 (A) и HCT116p53KO (Б) после облучения. Контроль – необлученные клетки, экспрессия принята за 1. Представлены средние значения из 3-х экспериментов и доверительные интервалы. Во всех группах отличия от контроля достоверны при $p \le 0.05$ (однофакторный ANOVA)

Регуляция экспрессии генов семейства *Bcl-2 - BBC3* (белок PUMA) и *PMAIP1* (белок Noxa) - опосредована p53 [Kim W. et al., 2019]. В ответ на облучение клеток HCT116 относительное количество мPHK *BBC3* увеличивалось одновременно с повышением мPHK *TP53*, достигая 3-4-кратного подъёма к 12 ч. К 24 часам мPHK *BBC3* снижалась, однако превышала контрольные значения в ~2-3 раза. Ген *BBC3* практически не экспрессируется в сублинии HCT116p53KO; в

облученных клетках уровень мРНК *BBC3*-превышал контрольный не более, чем в 1.5 раза (Рис. 13). Фоновый базальный уровень экспрессии *BBC3* в сублинии HCT116p53KO можно объяснить p53-независимыми механизмами [Fernandez-Zapico M.E. et al., 2011; Valentino T. et al., 2013].

Рисунок 13. Уровни мРНК гена *BBC3* в клетках HCT116 (А) и HCT116р53КО (Б) после облучения. Контроль – необлученные клетки, экспрессия принята за 1. Представлены средние значения из 3-х экспериментов и доверительные интервалы. Во всех группах отличия от контроля достоверны при р ≤ 0.05 (однофакторный ANOVA)

Индукция гена *PMAIP1* в клетках выражена слабее, чем индукция *BBC3*. В линии HCT116 p53 WT *PMAIP1* практически не отвечает на облучение в дозе 4 Гр (Рис. 14, А); даже при действии дозы 10 Гр активация этого гена не превышает 2-кратный уровень. В сублинии HCT116p53KO зависимости относительного

содержания мРНК *PMAIP1* от времени и дозы не наблюдается (Рис. 14, Б). Таким образом, гены *TP53, CDKN1A* и *BBC3* следует считать p53-зависимыми сенсорами ответа клеток на ионизирующее излучение, тогда как ген *PMAIP1* рефрактерен даже для "выраженного" (10 Гр) стимула.

Рисунок 14. Уровень мРНК гена *РМАІР1* (NOXA) в HCT116 (A) и HCT116р53КО (Б) после облучения. Контроль – необлученные клетки, экспрессия принята за 1. Представлены средние значения из 3-х экспериментов и доверительные интервалы. Во всех группах отличия от контроля достоверны при р ≤ 0.05 (однофакторный ANOVA)

Важным является изучение долгосрочных эффектов радиоизлучения на экспрессию вышеперечисленных генов, т.к. именно они являются предикторами радиорезистентности. Для этого выбраны сроки 3-5 дней после облучения дозами 4 Гр и 10 Гр. На 3-й день после облучения *TP53* всё ещё повышен в ~2 раза при 4 Гр и в 3,6 раза – при 10 Гр. К 5 дню эффекты практически исчезают – при

облучении 4 Гр экспрессия не отличается от фоновой, при 10 Гр – в ~2 раза выше необлученного контроля (Рис. 15).

Рисунок 15. Отсроченные эффекты облучения клеток HCT116 на экспрессию гена *TP53*. Представлены средние значения из 3-х экспериментов и доверительные интервалы. Во всех группах отличия от контроля достоверны при $p \le 0.05$ (однофакторный ANOVA)

В случае *CDKN1A* (Рис. 16) эффект ослабевает значительно раньше – в клетках HCT116 после облучения дозой 4 Гр через 3-5 дней уровень экспрессии не отличим от фонового (необлученные клетки). После 10 Гр этот уровень равен 2.6 относительно контроля на 3-й день и близок к 1 на день 5. Иная ситуация с линией HCT116p53KO – в отсутствие p53 *CDKN1A* не активируется: его экспрессия при облучении 4-10 Гр практически не превышает фоновый уровень.

Рисунок 16. Отсроченные эффекты облучения на экспрессию гена *CDKN1A* в клетках HCT116 (A) и HCT116р53KO (Б). Представлены средние значения из 3-х экспериментов и доверительные интервалы. Во всех группах отличия от контроля достоверны при р ≤ 0.05 (однофакторный ANOVA)

Далее, по аналогии с краткосрочными эффектами облучения, были изучены p53-зависимые гены *BBC3* и *PMAIP1* (Puc. 17). мPHK обоих генов низка к дню 3, не превышая относительного уровня 1.7 при 10 Гр. На 5-й день уровни мPHK не отличаются от контрольных. В сублинии HCT116p53KO нет зависимости от дозы и времени после облучения, уровень экспрессии равен таковому в необлученном контроле.

Рисунок 17. Долгосрочные эффекты облучения на экспрессию генов *BBC3* и *PMAIP1* в клетках HCT116 (верхняя панель) и p53KO (нижняя панель). Представлены средние значения из 3-х экспериментов и доверительные интервалы. Во всех группах отличия от контроля достоверны при р ≤ 0.05 (однофакторный ANOVA)

3.4. Влияние статуса p53 и дозы облучения на индукцию p53-зависимых белков

Следующий этап - анализ индукции белков в клетках с различным статусом p53 в ответ на облучение. Результаты иммуноблоттинга через 3-24 ч после облучения клеток HCT116 и HCT116p53KO (4 Гр и 10 Гр) показаны на рисунке 18. Белок p53 активируется дозозависимым образом в первые часы после облучения, достигает максимума к 12 ч, превышая контроль в ~2 и ~5 раз для 4 Гр и 10 Гр, соответственно, после чего снижается до 3-часовых значений (по результатам денситометрии). Изменения p21 схожи с таковыми для p53, однако

58

выраженность прироста p21 значительно ниже (в 2 раза выше относительно контроля для дозы 4 Гр и в 2.5 раза для дозы 10 Гр), при этом через 24 ч количество p21 остается повышенным. В сублинии HCT116p53KO p53 не определялся; уровень p21 в ответ на облучение практически не изменяется.

Количество проапоптотического p53-зависимого белка PUMA (кодируется геном *BBC3*) в облученных клетках HCT116 изменяется в соответствии с нарастанием p53. Важно, что PUMA нарастает уже в первые часы после облучения и активируется сильнее, чем p21. Так, с 3 до 12 ч после облучения дозой 10 Гр его уровень был в ~3 раза выше контроля. В сублинии HCT116p53KO выявлены лишь следовые количества PUMA, количество не зависело от дозы.

Наконец, индукция Noxa (кодируется геном *PMAIP1*) не зависела от доз облучения и имела слабую связь со статусом (Puc.17).

Рисунок 18. Иммуноблоттинг p53, p21, PUMA и Noxa в клетках HCT116 и HCT116p53KO после облучения. Для контроля нанесения белков использовали β-актин

Позднее (3-5 дни) воздействие 10 Гр приводило к практически полной гибели опухолевых клеток и невозможности статистически достоверно определить уровни соответствующих белков, поэтому использована только доза 4 Гр. Также, принимая во внимание незначительность эффектов в сублинии HCT116p53KO на ранних этапах, решено отказаться от анализа индукции белков в этой сублинии на 3-5 дни после облучения.

По результатам иммуноблоттинга видно (Рис. 19), что уровень p53 всё ещё отличим от контроля к 3 дню после облучения дозой 4 Гр (в ~1,3 раза), после чего - к дню 5 - индукция снижается до контрольных значений. Одновременно наблюдали схожее повышение p21 к 3-му дню, а уровни к 5 дню также не отличалась от контроля. Что касается p53-зависимых белков PUMA и Noxa – не зафиксировано долгосрочных изменений в количествах этих белков после облучения.

Рисунок 19. Иммуноблоттинг p53, p21, PUMA и Noxa в клетках HCT116 после облучения 4 Гр. В качестве контроля нанесения белков на гель использовали β-актин

По результатам исследования долгосрочных эффектов облучения уровни мРНК и белков можно сделать следующий вывод: ответы быстры, проявляются в течение первых часов/суток, практически полностью снижаясь к 72 ч, а к 5 суткам эффекты неотличимы от контрольных (интактных) значений. Доза 10 Гр является сублетальным стимулом, вызывая гибель > 60% клеточной популяции уже к 3-му дню. В связи с этим, в дальнейшем при изучении комбинации фармакологических ингибиторов CDK8/19 с облучением мы сосредоточились на анализе экспрессии генов и белков в первые 24 ч после однократного облучения клеток.

3.5. Выживаемость клеток при комбинации облучения с ингибированием CDK8/19

Для повышения радиочувствительности клеток НСТ116 с различным статусом гена *TP53* исследовано фармакологическое ингибирование CDK8/19 протеинкиназ регуляторов перепрограммирования генной транскрипции. С помощью МТТ-тестов и световой микроскопии оценена выживаемость и морфологические изменения в клетках через 1-5 дней после облучения дозами до 10 Гр в комбинации с селективным блокатором CDK8/19 сенексином Б.

На первоначальном этапе подбирали концентрации сенексина Б. Цитотоксичность исследовали через 1-5 дней с ингибитором. Концентрации – от 10 мкМ до 0.25 мкМ. Результаты представлены на рисунке 20.

Рисунок 20. Выживаемость (%) клеток НСТ116 при инкубации с различными дозами сенексина Б в течение 5 дней. Контроль (К) – необлученные клетки. Представлены средние значения из 3-х экспериментов с стандартными отклонениями. Отличия от контроля достоверны при р ≤ 0.05

Как следует из графиков, сенексин Б нетоксичен на протяжении не менее 3 сут, однако при концентрациях выше 2.5 мкМ на 5-й день наблюдается гибель клеток. Чувствительность клеток HCT116 к ингибированию CDK8/19 выше, чем у клеток с нефункционирующим p53. Для исследований комбинации сенексина Б и облучения выбраны концентрации препарата 0.5-2.5 мкМ и дозы облучения 4 Гр и 10 Гр для оценки эффектов через 3-5 дней. Сенексин Б вносили за 3 ч до облучения. Результаты выживаемости клеток показаны на рисунке 21.

Рисунок 21. Выживаемость клеток HCT116 при комбинации облучения с сенексином Б. Контроль (К) – необлученные клетки. По оси X – концентрации сенексина Б. Представлены средние значения из 3-х экспериментов с стандартными отклонениями. Во всех группах отличия от контроля достоверны при $p \le 0.05$

Нетоксичная концентрация сенексина Б 1 мМ выбрана для исследований комбинации с облучением. Промежуточным этапом являлся анализ долгосрочных цитотоксических или цитостатических эффектов препарата. Для этого клетки инкубировали в среде с 1мкМ сенексина Б в течение 14 суток, заменяя среду с препаратом каждые 4 сут (Рис. 22). На протяжении эксперимента не отмечено снижение количества клеток в культуре или их гибель.

Рисунок 22. Пролиферация клеток HCT116 и HCT116р53КО в присутствии сенексина Б (1 мкМ). По оси X – дни инкубации, зелёными кружками выделены дни замены среды с препаратом. Каждая точка представлена в виде значений из 3-х экспериментов с стандартными отклонениями. Отличия от контроля достоверны при $p \le 0.05$

Далее проводили оценку цитотоксичности при комбинации облучения и сенексина Б. С помощью оптической микроскопии выявлены морфологические изменения в клетках через 3 сут после воздействия дозами до 10 Гр в присутствии и в отсутствие сенексина Б (Рис. 23). В то время как в необлученных клетках и в

группе с добавлением только 1мкМ сенексина Б морфологических изменений не наблюдалось, у облученных дозой 4 Гр клеток на 3-й день выражены нарушение формы и размеров клеток, блеббинг, фрагментация цитоплазмы - признаки апоптоза. Сенексин Б значительно усиливал эффекты. Ещё более выраженная гибель клеток наблюдалась при облучении 10 Гр; в комбинации облучения и ингибитора неповрежденные клетки отсутствовали. Интересно, что если при облучении без добавления ингибитора CDK8/19 у клеток с инактивированным р53 гибель более выражена, то при комбинации указанных воздействий более выражена гибель клеток с интактным р53.

Рисунок 23. Фотографии клеток с различным статусом p53 на 3-й день после облучения дозами 4-10 Гр ± 1мкМ Сенексин Б. Показаны характерные участки после просмотра не менее 6 произвольных полей зрения. Линейка 100 мкм

Анализ цитотоксичности комбинации с помощью теста МТТ (Рис. 24) показал, что Сенексин Б в моновоздействии не влияет на выживаемость клеток с различным статусом p53. Облучение дозами 4-10 Гр приводит к гибели клеток HCT116p53KO сильнее, чем клеток дикого типа, т.к. не происходит p53зависимой остановки клеточного цикла и репарации повреждений. Анализируя 5й день как наиболее показательный срок после облучения, видим, что выживаемость клеток HCT116 составила 63.6% (4 Гр) и 33.5% (10 Гр), а клеток с нефункционирующим p53 – 38.8% и 19.6%, соответственно. Комбинация облучения с 1мкМ сенексина Б усиливала гибель линии HCT116 на 30-40%, но не влияла на клетки HCT116p53KO. Это предполагает наличие CDK8/19-зависимого механизма регуляции выживаемости / гибели в клетках с интактным p53.

Рисунок 24. Выживаемость (%) клеток линии HCT116 при облучении дозами 4 и 10 Гр \pm 1 мкМ сенексина Б на 3-5 сут после облучения. Представлены средние значения 3-х экспериментов с стандартными отклонениями. Во всех группах отличия от контроля достоверны при р ≤ 0.05

3.6. Анализ клеточного цикла при комбинировании облучения и ингибитора CDK8/19

Для анализа клеточного цикла клетки с интактным р53 и нокаутом облучали дозами 4 и 10 Гр, через 3 сут лизировали в буфере, содержащем пропидия иодид, и оценивали распределение фаз subG₁ (фрагментация ДНК), G₁ и G₂/M. Результаты представлены на рисунке 25. На гистограммах видно, что в облученных клетках НСТ116 выражена задержка в G₂/M. В сублинии НСТ116р53КО увеличивается доля клеток в subG₁. При облучении дозой 4 Гр НСТ116 доля клеток, задержанных в G₂/М фазе, составляла 46% при относительно небольшой доле subG₁ (23%). Облучение 10 Гр вызывало снижение G₂/M до 36%, однако увеличивалась доля клеток с фрагментированной ДНК (35%). Добавление сенексина Б (1 мкМ) перед облучением усиливало гибель клеток HCT116, индуцируя апоптоз и преодолевая задержку цикла в G₂/M. В сублинии НСТ116р53КО добавление сенексина Б практически не влияло на распределение фаз цикла, усиление гибели зависело лишь от дозы облучения. При облучении HCT116р53КО дозой 4 Гр значение subG₁ составляло 39.5%, а G₂/M -16.8%. При добавлении препарата распределение фаз 41% и 20%, соответственно. При дозе 10 Гр соотношение практически не менялось.

Рисунок 25. Распределение фаз клеточного цикла линии HCT116 и сублинии HCT116p53KO при облучении 0-10 Гр ± 1 мкМ сенексина Б. Представлены результаты на 3-й день. А – гистограммы, полученные на проточном цитофлуориметре. Б – расчетные диаграммы (% соответствующих фаз)

3.7. Клоногенный анализ при комбинации ингибитора CDK8/19 с лучевыми воздействиями

На следующем этапе проанализирована выживаемость единичных клеток (колониеобразование) после облучения и обработки ингибитором CDK8/19. После воздействия 2 Гр и 4 Гр с или без сенексина Б по 200 клеток рассеивали на 100 мм чашки Петри в 10 мл полной среды и инкубировали при 37⁰C, 5%CO₂ на протяжении 14 сут. Результаты подсчёта колоний представлены на рисунке 26. В верхнем ряду - фотографии колоний, образованных необлученными клетками HCT116 и HT116p53KO (~200).

68

В среднем ряду представлены фотографии чашек с клетками, облученными дозой 2 Гр. При облучении клеток HCT116 без сенексина Б образовалось 86 ± 9 клонов, сублинии с инактивированным $p53 - 55\pm8$, однако колонии были крупнее. При комбинации облучения с сенексином Б выживаемость заметно снизилась и составляла 21 ± 4 и 29 ± 2 , соответственно. Наконец, при облучении 4 Гр в комбинации с ингибитором CDK8/19 (нижний ряд) выживших колоний практически не оставалось. При однократном воздействии на клетки HCT116 выжило 23 ± 5 колоний, нокаутные по p53 клетки образовали лишь 13 ± 2 колоний. Комбинация сублетальна: 6 ± 2 и 10 ± 1 колонии, соответственно.

Полученные результаты показывают, что сенексин Б в комбинации с облучением способен снижать колониеобразование клетками HCT116 в 2-3 раза относительно облучения без ингибитора CDK8/19. В клетках HCT116p53KO сенексин Б не усиливал лучевое воздействие.

Рисунок 26. Колониеобразование клеток, облученных в присутствии или в отсутствии сенексина Б. Окраска колоний кристаллическим фиолетовым. Показаны результаты одного репрезентативного эксперимента из 4 повторностей

3.8. Цитохимическое выявление маркера клеточного старения

Для исследования индуцированного "старения" использовали метод цитохимического выявления β -галактозидаз. Выбраны 2 временные точки после облучения: 2 дня (Рис. 27) и 3 дня (Рис. 28). Окрашивающий буфер с X-gal добавляли на 24 часа. Контролем служили клетки без сенексина Б и необлученные (интактные). На рисунке 26 представлены результаты окраски клеток на 2-й день после облучения. В контрольных клетках активность β -галактозидаз практически не наблюдалась (<5% популяции). При облучении 4 Гр наблюдается заметное старение, более выраженное в клетках HCT116: средняя доля окрашенных клеток ~30%, для HCT116p53KO 25%. При добавлении 1 мкМ сен Б процент окрашенных клеток HCT116 снизился до 10-12%. В сублинии HCT116p53KO снижение не столь существенное. При облучении 10 Гр количество стареющих клеток увеличивалось в 1.5-2 раза, оставаясь ниже на 10-15% при комбинации облучения с сенексином Б.

Рисунок 27. Окраска клеток на β-галактозидазу через 2 дня после облучения 4-10 Гр с или без 1 мкМ сенексина Б. Показаны репрезентативные участки после просмотра не менее 100 клеток в 6 произвольно выбранных полях зрения. Линейка 100 мкм.

На 3-й день после облучения (Рис. 28) индукция старения более выражена. Сенексин Б (1 мкМ) уменьшал этот эффект, не оказывая влияния на клетки HCT116p53KO.

Рисунок 28. Выявление β-галактозидазы через 3 дня после облучения 4-10 Гр с или без 1 мкМ сенексина Б. Показаны репрезентативные участки после просмотра не менее 100 клеток в 6 произвольно выбранных полях зрения. Линейка 100 мкм

3.9. Экспрессия p53-ассоциированных генов при комбинации облучения и ингибитора CDK8/19

Следующим этапом являлось выявление молекулярных механизмов, ответственных за радиосенсибилизацию опухолевых клеток при ингибировании CDK8 и -19. Анализ мРНК проводился с помощью ПЦР в реальном времени, представлены средние значения из 3-х экспериментов и доверительные интервалы. Для нормализации сигналов амплификации использовались транскрипты гена *GAPDH*.

Активация *TP53* в клетках HCT116 (Рис. 29) происходит в первые часы после облучения и достигает максимума через 12 ч – усиление приблизительно в 9 раз при облучении 4 Гр и в 13 раз в ответ на 10 Гр по сравнению с

необлученными клетками. Через 24 ч после облучения экспрессия *TP53* снижалась: выше контроля приблизительно в 7 (4 Гр) и 9 раз (10 Гр). Ингибитор CDK8/19 сенексин Б (1 мкМ) существенно снижал активацию *TP53* на протяжении всего эксперимента на 30-40%. Так, к 12 ч при действии 4 Гр показано снижение активации гена в 6.5 раз (4 Гр) и в 10 раз (10 Гр).

Рисунок 29. Относительный уровень мРНК *ТР53* в облученных клетках НСТ116. Контроль – необлученные клетки, экспрессия принята за 1. Представлены средние значения из 3-х экспериментов и доверительные интервалы. Во всех группах отличия от контроля достоверны при р ≤ 0.05 (двухфакторный ANOVA тест)

Характер активации *CDKN1A* в облученных клетках HCT116 схож с таковым для *TP53*: максимум достигается к 12 ч (Рис. 30, А). В это время увеличение мРНК *CDKN1A* достигает 4-6 раз. К 24 ч мРНК *CDKN1A* снижалась на ~20% от контрольных значений. Комбинация облучения и сенексина Б снижала экспрессию этого гена, однако не так выражено, как в случае *TP53* (15-20%). Напротив, в сублиниии с нефункционирующим p53 *CDKN1A* слабо отвечал как на облучение, так и на комбинацию с ингибитором CDK8/19 (Рис. 30, Б).

Рисунок 30. Изменения мРНК гена *CDKN1A* в ответ на облучение линии HCT116 (*A*) и сублинии HCT116р53KO (*Б*). Контроль – необлученные клетки, экспрессия принята за 1. Представлены средние значения из 3-х экспериментов и доверительные интервалы. Во всех группах отличия от контроля достоверны при $p \le 0.05$ (двухфакторный тест ANOVA)

Далее, в ответ на облучение клеток НСТ116 относительное количество мРНК *BBC3* увеличивалось одновременно с повышением мРНК *TP53*, достигая 3-4-кратного подъёма к 12 ч. К 24 ч мРНК *BBC3* снижалась, однако превышала контрольные значения в ~2-3 раза (Рис. 31, А). Ген *BBC3* практически не экспрессируется в сублинии НСТ116р53КО; в облученных клетках уровень мРНК *BBC3*–превышал контрольный лишь в 1.5 раза (Рис. 31, Б). Низкий базальный уровень экспрессии *BBC3* в сублинии НСТ116р53КО можно объяснить р53независимыми механизмами [Kuchur O. et al., 2021b]. Эффекты сенексина Б не проявлялись ни в одной линии.

Рисунок 31. Изменения мРНК гена *BBC3* в ответ на облучение линии HCT116 (*A*) и сублинии HCT116p53KO (*Б*). Контроль – необлученные клетки, экспрессия принята за 1. Представлены средние значения из 3-х экспериментов и доверительные интервалы (вертикальные отрезки). Во всех группах отличия от контроля достоверны при $p \le 0.05$ (двухфакторный ANOVA)

Наконец, индукция гена *PMAIP1* выражена слабее, чем индукция *BBC3*. В линии HCT116 *PMAIP1* практически не отвечает на облучение в дозе 4 Гр; даже при действии 10 Гр активация этого гена не превышает 2-кратный уровень. В сублинии HCT116p53KO зависимости относительного содержания мPHK *PMAIP1* от времени и дозы не наблюдается (Рис. 32). Как и в случае гена *BBC3*, не отмечено статистически значимых эффектов сенексина Б.

Таким образом, гены *TP53, CDKN1A и BBC3* следует считать p53зависимыми сенсорами ответа клеток на ионизирующее излучение, тогда как ген *PMAIP1* рефрактерен даже для "сверхсильного" (10 Гр) стимула.

Рисунок 32. Изменения мРНК гена *РМАІР1* в ответ на облучение линии HCT116 (*A*) и сублинии HCT116р53KO (*Б*). Контроль – необлученные клетки, экспрессия принята за 1. Представлены средние значения из 3-х экспериментов и доверительные интервалы (вертикальные отрезки). Во всех группах отличия от контроля достоверны при $p \le 0.05$ (двухфакторный ANOVA)

3.10. Влияние комбинации облучения и ингибитора CDK8/19 на индукцию p53-ассоциированных белков

Как соотносятся уровни мРНК исследуемых генов с количествами соответствующих белков в ответ на облучение клеток с различным статусом р53?

Результаты иммуноблоттинга через 3-24 ч после облучения клеток HCT116 и HCT116р53KO (0 и 4 Гр) показаны на рисунке 33.

В линии HCT116 белок p53 активируется дозозависимым образом на протяжении 24 ч: по результатам денситометрии выявлено, что при облучении дозой 4 Гр максимум индукции достигается к 6-12 ч и превышает контроль в 3.5-4 раза. Сенексин Б (1 мкМ), добавленный к клеткам за 3 часа до облучения, с первых часов заметно снижал накопление p53, на протяжении 12 ч его индукция при комбинированном воздействии не превышала 2-2.5 раз относительно контроля, лишь к 24 ч эффект ингибирования ослабевал.

Изменения p21 схожи с таковыми для p53. Активация происходит в первые часы после облучения дозой 4 Гр, к 24 ч снижается до уровня необлученного контроля. Важно, что сенексин Б также влиял на индукцию p21: к 3-6 ч она была в 2 раза ниже, чем при облучении без ингибитора. В сублинии HCT116p53KO активация p21 оказывается слабой.

Количество белка PUMA в облученных клетках HCT116 изменяется в соответствии с нарастанием p53 и имеет сходство с p21; выраженное изменение индукции заметно только в первые 3 ч, Сенексин Б снижал накопление PUMA. Далее, с 6 ч, индукция снижалась. В сублинии HCT116p53KO выявлены лишь следовые количества PUMA.

Наконец, не выявлена зависимость Noxa от дозы облучения, комбинации с сенексином Б или статусом p53. Предположительно, такие эффекты обусловлены преобладанием p53-независимых механизмов в регуляции Noxa [Kuchur O. et al., 2021b].

Рисунок 33. Иммуноблоттинг p53, p21, PUMA и Noxa в клетках HCT116 (WT) и HCT116p53KO после облучения с или без сенексина Б В качестве контроля нанесения белков на гель использовали β-актин

На рисунке 34 приведены количества p53 и p21 в линии HCT116 при обработке ингибитором CDK8/19 без облучения. Ингибитор не оказывал эффекта на уровни соответствующих белков.

Рисунок 34. Иммуноблоттинг p53 и p21 в клетках HCT116 при действии сенексина Б без облучения. В качестве контроля нанесения белков на гель использовали β-актин

3.11. Экспрессия генов-регуляторов p53 при комбинации облучения и ингибитора CDK8/19

Получив подтверждение CDK8/19-зависимой активации p53, решено проверить, не влияет ли перепрограммирование транскрипции на белки p53зависимого ответа на повреждение ДНК: ATM (ataxia-telangiectasia) серин/треониновая протеинкиназа, которая активируется при двухнитевых разрывах ДНК; чекпойнт-киназа Chk2, ATM-зависимым образом фосфорилирующая p53; Mdm2 (mouse double minute) - E3-убиквитинлигаза, являющаяся антагонистом p53, обусловливая его протеасомную деградацию.

Анализ экспрессии гена *ATM*, продукт которого является первым звеном в каскаде, активируемом при двухнитевых повреждениях ДНК, показал зависимость индукции гена только от облучения (Рис. 35). Через 3 ч после облучения 4 Гр относительный уровень экспрессии гена в 1.9 раз превышал значения контроля, при облучении дозой 10 Гр – в 2.8 раз; далее, с 6 ч, активность гена падала и к 24 ч после облучения дозой 4 и 10 Гр не превышала значений 1.2 и 1.8, соответственно. В линии, нокаутной по р53, значения были схожими: 1.8 и 2.5 через 3 ч после облучения 4 Гр и 10 Гр, соответственно. Важно, что ингибитор CDK8/19 не влиял на экспрессию *ATM*.

Рисунок 35. Изменения мРНК гена *АТМ* в облученных клетках HCT116 (*A*) и HCT116p53KO. Контроль – необлученные клетки, экспрессия принята за 1. Представлены средние значения 3-х экспериментов и доверительные интервалы. Во всех группах отличия от контроля достоверны при $p \le 0.05$ (двухфакторный ANOVA)

Следующим шаг - анализ гена *СНЕК2*, продукт которого выполняет функцию опухолевого супрессора и активируется ATM-зависимым образом и фосфорилирует p53 и CDC25, что предотвращает вступление в митоз клетки с нерепарированными повреждениями ДНК. Динамика экспрессии *СНЕК2* схожа с таковой для *ATM* – максимум активации в первые часы после облучения, что позволяет запустить репарационные системы клетки (Рис. 36). К 3 ч после 4 Гр относительный уровень экспрессии равен 1.5, а для 10 Гр – 3.1. К 6 ч этот показатель незначительно вырос, после этого снижался и к 24 ч экспрессия *СНЕК2* для клеток, облучённых 10 Гр, составляла 2.0. Показатели характерны как для клеток HCT116, так и для HCT116р53KO, однако в последнем случае снижение экспрессии происходит уже к 6 ч. Не отмечено влияние сенексина Б на экспрессию *СНЕК2*.

Рисунок 36. Изменения мРНК *СНЕК2* в облученных клетках НСТ116 (*A*) и сублинии НСТ116р53КО (*Б*). В необлученных клетках экспрессия принята за 1. Представлены средние значения 3-х экспериментов и доверительные интервалы. Во всех группах отличия от контроля достоверны при р ≤ 0.05 (двухфакторный ANOVA)

Анализ экспрессии следующего гена позволил установить – не является ли CDK8/19-зависимое подавление p53 негативной регуляцией, опосредованной активацией его антагониста – E3-убиквитинлигазы Mdm2. Облучение заметно снижало мPHK *MDM2* в клетках с интактным p53 (Puc. 37, A). Так, через 3 ч

после облучения клеток HCT116 дозами 4 и 10 Гр экспрессия гена падает в 2-3 раза. С 6 ч она восстанавливается, к 24 ч практически не отличается от необлучённого контроля. Вновь сенексин Б существенного влияния на экспрессию этого гена не оказывал.

Интересным оказалось поведение *MDM2* в клетках HCT116p53KO (Рис. 37, Б): не было ответов ни на облучение даже высокими дозами, ни на сенексин Б, что говорит о ключевой роли p53 в функционировании убиквитинлигазы Mdm2.

Рисунок 37. Уровни мРНК *MDM2* в облученных клетках HCT116 (*A*) и сублинии HCT116p53KO (*Б*). Контроль – необлученные клетки, экспрессия принята за 1. Представлены средние значения 3-х экспериментов и доверительные интервалы. Во всех группах отличия от контроля достоверны при $p \le 0.05$ (двухфакторный ANOVA)

Оказывает ли облучение влияние на экспрессию гена *CDK8*? В линии HCT116 изменений уровней мРНК *CDK8* не происходит на протяжении 24 ч после облучения (Рис. 38, А). К 12 ч экспрессия относительно контроля была равна 1.3 и 1.15 после облучения дозами 4 Гр и 10 Гр, однако эти колебания статистически незначимы. На Рисунке 38 (Б) показано небольшое изменение активности в нокаутных по p53 клетках: облучение увеличило мРНК (1.2-1.3 раза) к 24 ч. Сенексин Б не влиял на экспрессию гена *CDK8*.

Рисунок 38. Относительные уровни мРНК *CDK8* в облученных клетках HCT116 (*A*) и сублинии HCT116p53KO (Б). Контроль – необлученные клетки, экспрессия принята за 1. Представлены средние значения 3-х экспериментов и доверительные интервалы. Во всех группах отличия от контроля достоверны при $p \le 0.05$ (двухфакторный тест ANOVA).

Исследование экспрессии *TP53* на клетках с нокаутом гена *CDK8* показало схожие с нокаутом p53 результаты: в сублинии HCT116CDK8KO *TP53*

практически не активировался в ответ на 10 Гр: относительный уровень мРНК *ТР53* был в 4-5 раз ниже по сравнению с показателями в клетках с интактным CDK8 (Рис. 39).

Рисунок 39. Относительные уровни мРНК *ТР53* в облученных клетках HCT116 с различным статусом гена. Контроль (К) – необлученные клетки, экспрессия принята за 1. средние значения 3-х экспериментов и доверительные интервалы. Во всех группах отличия от контроля достоверны при $p \le 0.05$ (двухфакторный тест ANOVA).

Для расширения панели фармакологических ингибиторов CDK8/19 дополнительно изучены BI-1347 - селективный ингибитор CDK8/циклина C с IC50 для HCT116 и HEK293 ~ 200 нМ и конъюгат для мишень-направленной протеолитической деградации белка (PROTAC). Результаты, представленные на рисунке 40 подтверждают данные с сенексином Б: подавление киназной активности CDK8/19 снижает активацию *TP53* в ответ на облучение, не влияя на уровень мРНК в покоящихся клетках.

Рисунок 40. Относительные уровни мРНК *ТР53* в клетках НСТ116 и НЕК293 при комбинации облучения с ингибиторами CDK8/19. Контроль (К) – необлученные клетки. Контроль (К) – необлученные клетки, экспрессия принята за 1. Представлены средние значения 3-х экспериментов и доверительные интервалы. Во всех группах отличия от контроля достоверны при $p \le 0.05$ (однофакторный тест ANOVA).

3.12. Влияние облучения и ингибитора CDK8/19 на индукцию белков, регулирующих p53

Заключительным этапом являлся анализ активности белков ATM, Chk2, Mdm2 и CDK8 для установления молекулярных отношений между этими белками, ингибированием CDK8/19 и ионизирующим излучением. При выборе

условий экспериментов ориентировались на представленные выше данные ПЦР в реальном времени.

Индукция белка АТМ изменялась дозозависимым образом как в клетках с функционирующим p53, так и в нокаутной линии (Рис. 41), максимум наблюдался к 3 ч и, по данным денситометрии, был равен 2-2.5 относительно интактного контроля. После чего, к 24 ч, индукция нормализовалась и была практически неотличима от контроля. Сенексин Б (1 мкМ) не влиял на индукцию АТМ как в моновоздействии, так и в комбинации с облучением.

Излучение		0	Гр		10 Гр					
Сенексин Б (1 мкМ)	-	-	+	+	-	-	+	+		
Cmamyc p53	WT	KO	WT	KO	WT	KO	WT	KO		
АТМ (3ч)	_				-	-	-			
АТМ (6ч)			_			_	-	-		
АТМ (12ч)	-	_			-		_	_		
АТМ (24ч)			Sec ence Special							
Бета-актин	-	-	-		-	-		-		

Рисунок 41. Иммуноблоттинг АТМ в клетках НСТ116 (WT) и НСТ116р53КО (KO). В качестве контроля нанесения белков на гель использовали β-актин.

Чекпойнт-киназа Chk2 стабилизирует p53, что приводит к остановке клеточного цикла в фазе G₁. Кроме того, эта киназа способна фосфорилировать фактор транскрипции E2F1 и белок промиелоцитарного лейкоза (PML), участвующий в апоптозе. Индукция Chk2 полностью повторяла таковую у ATM – селективный ингибитор CDK8/19 не влиял на активность белка, однако облучение

4 Гр усиливало его активность в ~2.5 раза; эффект снижался к 24 ч. Такой же профиль наблюдается в HCT116 с инактивированным р53 (Рис. 42).

Излучение		0	Гр	10 Гр					
Сенексин Б (1 мкМ)	-	-	+	+	-	-	+	+	
Cmamyc p53	WT	KO	WΤ	KO	WT	KO	WΤ	KO	
Chk2 (3ч)	_	_	_		_	_	_	_	
Chk2 (6ч)		_	_					-	
Chk2 (12ч)	_				-	_	_	_	
Chk2 (24ч)	~				_				
Бета-актин		-	_	_	_		-		

Рисунок 42. Иммуноблоттинг Chk2 клетках HCT116 (WT) и HCT116р53KO (KO). В качестве контроля нанесения белков на гель использовали β-актин.

Напротив, воздействие дозой 4 Гр подавляло Mdm2 на протяжении 24 ч (Рис. 43). К 12 ч количество Mdm2 в клетках HCT116 было в 2 раза ниже, чем у необлучённого контроля. При комбинации сенексина Б с облучением индукция возвращалась до уровня 0.75-0.8 от контрольной. К 24 ч эффект препарата ослаблялся, индукция снова падала. В клетках HCT116p53KO характер индукции отличался от описанного для клеток с интактным p53: Mdm2 не отвечал на облучение (нет p53-зависимой регуляции) и комбинацию. Сенексин Б в отсутствие облучения не вызывал изменений.

Излучение		0	Гр		10 Гр					
Сенексин Б (1 мкМ)	-	-	+	+	-	-	+	+		
Cmamyc p53	WT	KO	WT	KO	WT	KO	WT	KO		
Mdm2 (3ч)	-	_	-	-	-	_	_			
Mdm2 (6Կ)	-	_	_	_	_			_		
Mdm2 (12ч)	-	_	_	-	_	_	_	_		
Mdm2 (24ч)	_	-	_	_			_	_		
Бета-актин	_	_	-	_	-	-	-	-		

Рисунок 43. Иммуноблоттинг Mdm2 клетках HCT116 (WT) и HCT116р53KO (KO). В качестве контроля нанесения белков на гель использовали β-актин.

Иммуноблоттинг с антителами к CDK8 позволил установить, что ни статус p53, ни облучение не влияют на индукцию CDK8 на протяжении 24 ч. Так как сенексин Б является блокатором киназной активности CDK8/19, добавление препарата также не приводило к изменению активности соответствующего белка в клетках HCT116 (Рис. 44).

Рисунок 44. Иммуноблоттинг CDK8 в клетках HCT116 (WT) и HCT116р53KO (KO). В качестве контроля нанесения белков использовали β-актин.

По аналогии с результатами экспрессии (ПЦР-анализ, Рис. 39), проведена оценка индукции белка p53 при комбинации облучения с сенексином Б в клетках с нокаутом *CDK8*. Результаты представлены на рисунке 45. Индукция p53 подавляется в сублинии HCT116CDK8KO, эффект не регулируется ингибитором CDK8/19.

Рисунок 45. Иммуноблоттинг p53 в клетках HCT116 с различным статусом CDK8. В качестве контроля нанесения белков использовали β-актин.

3.13. Взаимосвязь транскрипционного фактора NFкB и экспрессии p53 с ингибированием CDK8/19

Является ли взаимодействие CDK8/19 и p53 прямым или опосредованным? Кофактором CDK8/19 является NFкВ –транскрипционный фактор, регулирующий многочисленные ответы на внеклеточные воздействия [Li J. et al., 2019; Chen M. et al., 2017]. Для выявления связи CDK8/19, NFкВ и p53 в ответах на облучение использованы ингибиторы CDK8/19: сенексин Б и BI1347, а также MRT67307 ингибитор NFкВ (TBK1 и IKKє) и их комбинации без облучения и при облучении 10 Гр. На рис. 46, 47 показано, что ингибиторы и их комбинация не влияют на экспрессию *TP53* и *CDKN1A* без облучения. При облучении, как ожидалось, активировались исследуемые гены, а ингибиторы CDK8/19 снижали этот эффект на 35-40% относительно облучения без ингибиторов. TBK1 и IKKє дали схожий ответ – экспрессия *TP53* снизилась с 7.6 (10 Гр) до 4.5 (10 Гр + MRT67307), а *CDKN1A* с 4.5 (10 Гр) до 2.6 (10 Гр + MRT67307) раз. Однако, при комбинации двух ингибиторов разных механизмов – сенексин Б + MRT67307 или BI1347 + MRT67307 – экспрессия генов в облученных клетках практически восстанавливалась.

Рисунок 46. мРНК *ТР53* в клетках НСТ116 в зависимости от статуса *CDK8*, облучения и ингибирования NFкB. Сигналы отнесены к мРНК *RPLA*. Контроль (К) – необлученные клетки, экспрессия принята за 1. Представлены средние значения 3-х экспериментов и доверительные интервалы. Во всех группах отличия от контроля достоверны при р ≤ 0.05 (двухфакторный ANOVA тест)

Рисунок 47. Уровни мРНК *ТР53* (верхняя панель) и *CDKN1A* (нижняя панель) при комбинации облучения (10 Гр) с 1 мкМ сенексина Б, 200 нМ ВІ1347 и 200 нМ МКТ67307 (МКТ) в клетках НСТ116 через 24 ч. Сигналы отнесены к мРНК *RPLA*. Контроль – необлученные клетки, экспрессия принята за 1. Представлены средние значения 3-х экспериментов и доверительные интервалы. Во всех группах отличия от контроля достоверны при р ≤ 0.05 (однофакторный тест ANOVA)

Эксперимент независимо воспроизведен на нетрансформированных клетках эмбриона почки человека НЕК293, эффекты те же: восстановление активности генов *TP53* и *CDKN1A* при одновременном ингибировании CDK8/19 и NFкB во время лучевого воздействия (Рис. 48).

90

Рисунок 48. Уровни мРНК *ТР53* (верх) и *CDKN1A* (внизу) при комбинации облучения (10 Гр) и ингибиторов CDK8/19 (1мкМ сенексина Б, 200 нМ ВI1347) и NFкВ (200 нМ МRТ67307, MRT) в клетках НЕК293 через 24 ч. Сигналы отнесены к мРНК *RPLA*. Контроль (К) – необлученные клетки, экспрессия принята за 1. Представлены средние значения 3-х экспериментов и доверительные интервалы. Во всех группах отличия от контроля достоверны при $p \le 0.05$ (однофакторный ANOVA тест)

3.14. Взаимодействия NFкB, p53 и CDK8/19

Наконец, вышеописанные данные подтвердились с помощью исследования ответов на трансляционном уровне. Результаты представлены на рисунке 49. В то время как облучение клеток HCT116 или HEK293 в присутствии одного из ингибиторов (CDK8/19 или NFкB) подавляет индукцию p53, комбинация ингибиторов практически полностью восстанавливает количество p53.

		0 Гр						10 Гр					
СенБ, 1 мкМ	-	+	-		+	-	-	+	-	-	+	-	
BI-1347, 200 нМ	-	-	+	-	-	+	-	-	+	-	-	+	
MRT67307, 200 нМ	-	-	-	+	+	+	-	-	-	+	+	+	
HCT116	_	_	_	-	-	-	-	-	-	-	-	-	
HEK293	-	-	-	-	-	-	-	-	-	-	-	-	
β-актин		-							-	-	-	-	

Рисунок 49. Иммуноблоттинг p53 в клетках HCT116 и HEK293 через 24 ч после комбинированного воздействия облучения и ингибиторов CDK8/19 (сенексин Б, BI1347) и NFкB (MRT67307).

Глава 4. ОБСУЖДЕНИЕ

Фактор транскрипции p53 регулирует многочисленные функции, главным образом, баланс выживания/гибели клеток посредством модуляции активности генов, продукты которых модулируют смену фаз клеточного цикла и репарацию ДНК [Joerger A.C., Fersht A.R., 2007; Muller P.A. et al., 2011]. Активность p53 в клетках контролируется в основном за счет регуляции его стабильности посредством Mdm2, Wip1, p53BP [Chen C.Y. et al., 1994; Bouvard V. et al., 2011; Lu X. et al., 2008; Mirza-Aghazadeh-Attari M. et al., 2019]. Стабильность регулируется и посредством фосфорилирования/дефосфорилирования аминокислотных остатков p53 протеинкиназами ATM, ATR, Chk1/2 в ответ на повреждения ДНК, в частности, при ионизирующем излучении [Canman C.E. et al., 1998; Saito S.I. et al., 2002]. Таким образом, p53 – важнейший сенсор ответов клеток на стресс.

Очевидно, p53 как регулятор экспрессии генов функционирует во взаимосвязи с другими компонентами транскрипционного аппарата. Правомерно предположить, что это компоненты быстрой адаптации экспрессии генов – циклинзависимыми транскрипционными протеинкиназами CDK7, CDK8/19, CDK9, CDK11 и др [Sun B. et al., 2020; Rimel J.K. et al., 2020; Dannappel M.V. et al., 2019; Mazan M. et al., 2019; Thieme E. et al., 2021; Zhang H. et al., 2018; Kwiatkowski N. et al., 2014].

В настоящей работе впервые показан и проанализирован механизм, через который протеикиназа CDK8 и ее паралог CDK19 могут влиять на процессы выживаемости и гибели опухолевых клеток через модуляцию p53.

На первом этапе, анализируя ответы на ионизирующее излучение клеток колоректального рака HTC116 с интактным p53 и сублинии HCT116p53KO с нефункционирующим p53 (в результате сдвига рамки считывания) обнаружены дозозависимые эффекты: при относительно низкой дозе облучения (2 Гр) выживаемость клеток с интактным p53 на 5-й день составила 90%, а при нокауте p53 - 53%, в то время как облучение дозой 10 Гр оказалось сублетальным: 22% для клеток HCT116 и 10% для HCT116p53KO. Даже при невысоких дозах (2-4 Гр)

гибель клеток с нефункционирующим p53 была значительно выше, в дальнейшем клетки не возвращались к исходной морфологии и физиологии. Различия выживаемости клеток с различным статусом p53 удалось также выявить при анализе клеточного цикла: в линии HCT116 среднее значение апоптотической фракции SubG₁ не превышало 20% в дни 3-5 после облучения 2-4 Гр, в это же время пул клеток с остановкой в сверочной точке G₂/M оставался выше 30% и увеличивался в дни 3-5. Клетки HCT116p53KO показали иное распределение фаз цикла - апоптотическая фаза SubG₁ достигала 35-55% в первые дни после облучения при относительно низкой фракции G₂/M (не выше 20%). В чём причина этих различий?

Можно предположить, что в клетках с интактным p53 вызванное облучением повреждение ДНК активирует протеинкиназы Chk1/2, которые, в свою очередь, стимулируют фосфатазу Cdc25. Этот путь также запускает экспрессию p53. Накопленный p53 активирует ингибитор клеточного цикла p21, тем самым задерживая клетки посредством подавления Cdc25 и предотвращения перехода через фазы G_1/S и G_2/M до завершения репараций [Giono L.E. et al., 2017]. В p53-негативных клетках не происходит блокирования цикла в ответ на повреждение ДНК, и Cdc25 позволяет клеткам с нарушениями пройти митоз, что приводит к гибели. Накапливающиеся повреждения приводят к увеличению процента клеток, гибнущих по p53-независимым механизмам, что и наблюдается в дни 3-5.

Изучая изменения р53-зависимых генов и белков в ответ на облучение, мы предоставили доказательства связи выживаемости клеток в ответ на облучение различными дозами и статусом р53. При однократном воздействии дозами 4-10 Гр наблюдался значительный рост ТР53 (до 14 раз относительно необлученного контроля) и зависимая от него экспрессия CDKN1A (до 6 раз). Чтобы установить гибели механизмы клеток. изучены p53р21-зависимые нами И проапоптотические факторы из семейства Bcl2 подсемейства BH3-only: p53зависимый модулятор апоптоза PUMA (и его ген BBC3) и сенсор повреждений ДНК Noxa (ген *PMAIP1*). В то время как в клетках с нефункционирующим p53

94

активация этих факторов не наблюдалась, в HCT116 (интактный p53) дозозависимый рост экспрессии и индукции наблюдался для PUMA с первых часов и оставался высоким в течение нескольких суток. Однако, уровень Noxa фактически не превышал фоновые значения при облучении дозами меньше 10 Гр.

На основании наших биоинформатических исследований [Kuchur O. et al., 2021b], а также данных литературы [Ploner C. et al., 2008; Kuribayashi K. et al., 2011], удалось установить, что проапоптотический белок Noxa играет второстепенную (в сравнении с PUMA) роль в ответе клеток на ионизирующее излучение. Экспериментальные денные показали, что ген *PMAIP1* активируется только при сильном (10 Гр) р53-активирующем воздействии; уровень активации невелик по сравнению с таковым у гена ВВСЗ. Биоинформатический анализ указал на особенности, важные для интерпретации данных о дифференциальной роли p53 в регуляции BBC3 и PMAIP1. Исходя из предсказанных мотивов, количество транскрипционных факторов, связывающихся с промотором гена *РМАІР1*, намного превышает число таковых для промотора и экзона 1 гена *BBC3*. Это может означать, что регуляция экспрессии РМАІР1 и, следовательно, индукция белка Noxa реализуются через многочисленные механизмы, независимые от р53.

На клетках линии эмбриональных фибробластов мыши МЕГ и в модели *in vivo* показано, что белок PATZ1, имеющий сайт связывания с *PMAIP1*, способен конкурировать с p53 за связывание с ДНК и ингибировать функции p53 при повреждении ДНК [Fedele M. et al., 2017]. Представители семейства транскрипционных белков SP/KLF, в частности, KLF4, ингибируют p53-зависимую регуляцию гена *TP53* [Rowland B.D. et al., 2005]. KLF5 связывается с p53, отменяя p53-зависимое подавление гена сурвивина; это способствует выживанию клеток острого лимфобластного лейкоза [Zhu N. et al., 2006]. Таким образом, неэффективность p53-активирующего стимула может быть обусловлена взаимодействием p53 с белком (белками) семейства KLF. Рефрактерность гена *PMAIP1* к p53-активирующим стимулам (например, ионизирующему излучению) может быть также связана с тем, что среди белков семейства KLF немало

репрессоров транскрипции, а промотор PMAIP1 богат сайтами связывания KLF/SP. Предположение о механизме трансрепрессии в регуляции p53-зависимых ответов согласуется со следующими данными: в линии эпителия молочной железы MCF10A Myc-ассоциированный белок MAZ (из семейства "цинковых пальцев") связывался с регуляторной областью p53 и ингибировал этот ген [Lee W.P. et al., 2016]. Протеинкиназа Akt отменяла ингибирующий эффект MAZ, что указывает на возможности эпигенетической реактивации p53.

Возможно, поиск и разработка ингибиторов факторов Hsp90, семейства KLF/Sp, и др., являющихся конкурентами p53 за связывание с промотором PMAIP1, позволит реактивировать этот белок и усилить апоптотические процессы, не увеличивая при этом эффективные дозы облучения.

Изучение метаболической активности клеток и распределение фаз клеточного цикла в присутствии селективного ингибитора CDK8/19 сенексина Б позволило установить факт радиосенсетизации клеток HCT116 (интактный p53). Ингибитор не только на 30-40% эффективнее запускал гибель клеток при комбинации с облучением (по сравнению с облучением без сенексина Б), но и препятствовал задержке в G_2/M , не позволяя клеткам «избегать» апоптоза посредством остановки клеточного цикла с последующей репарацией. Принимая во внимание отсутствие подобного эффекта на клетках с нефункциональным p53, логично связать активность CDK8/19- и p53-зависимых процессов.

Важной для апробации и применения на практике деталью оказалось полное отсутствие цитостатических и цитотоксических эффектов 1 мкМ сенексина Б в течение минимум 14 дней независимо от статуса p53. То есть, негативные для опухолевых клеток эффекты ингибирования CDK8/19 проявляются только как синергия при генотоксических воздействиях, например при химио- и лучевом воздействии.

Метод колониеобразования (клоногенный анализ) используется как "золотой стандарт" для определения способности отдельной опухолевой клетки к выживанию и формированию потомства. Этот метод первоначально был использован для оценки изменений в механизмах пролиферации клеток после ионизирующего излучения И химиотерапии, что позволяло оценить радиорезистентность опухолей различных локализаций и сенсибилизирующие эффекты при скрининге различных соединений [Rajendran V., Jain M.V., 2018]. Нами выявлены дозозависимые эффекты подавления формирования колоний клетками НСТ116, которые значительно усиливались при комбинировании ионизирующего излучения и воздействия ингибитором CDK8/19. Что касается нокаутных по р53 клеток, то тут – как и в случае теста МТТ на выживаемость опухолевой популяции – НСТ116р53КО были намного более чувствительны к облучению даже средними (4 Гр) дозами, в то время как добавление 1 мкМ сенексина Б практически не усиливало цитотоксичность. Это говорит, с одной стороны, о важности р53 для выживаемости и восстановления клеток, подвергшихся генотоксическому стрессу; с другой стороны – о существовании CDK8/19-зависимого механизма, реализующегося только в p53-полодительных клетках колоректального рака, что, безусловно, важно для клиники.

Ещё один цитологический метод, позволяющий оценить вклад означенной выше комбинации в процесс долговременной выживаемости и гибели клеток, является окраска на внутриклеточные β-галактозидазы – маркеры клеточного "старения". Известно, что большинство клеток человека претерпевают клеточное старение после накопления фиксированного количества клеточных делений или при воздействии различных стрессовых стимулов в культуре. Важно, что опухолевые клетки способны приобретать подобный старению фенотип, не погибнув в результате химиолучевого воздействия. Наши анализы показывают, что облучение дозами 4 и 10 Гр приводят к росту количества «стареющих» клеток НСТ116, и – в меньшей мере – клеток с неактивным р53. Интересно, что лечение клеток Сенексином Б за 3 часа до облучения снижало количество окрашенных клеток в 2-3 раза для обеих сублиний, однако полностью не предотвращало их старение. Поскольку считается, что стареющие клетки вносят вклад в развитие возрастных патологий и понижают эффективность противоопухолевой терапии, уменьшение их количества потенциально может помочь в лечении таких случаев [Itahana K. et al., 2007]. Более того, процессы клеточного старения связывают

непосредственно с p53-зависимым механизмом избегания опухолями апоптоза [Mijit M. et al., 2020], поэтому механизм подавления наработки SA-бетагалактозидаз через ингибирование CDK8/19 выглядит привлекательным для дальнейших исследований.

генов (р53-регулирующих и р53-Наконец, изучение двух групп регулируемых) и кодируемых ими белков позволило выяснить – на каких уровнях реализуются образом происходит эта регуляция И каким механизмы радиосенсетизации клеток НСТ116 при действии препарата Сенексин Б. Важно, что ответ на комбинацию препарата и терапевтического излучения наблюдался только в клетках с функционирующим р53 и только на уровне регуляции ТР53 и ниже по молекулярному каскаду (подавление экспрессии р53-зависимых генов и белков). Сенсор двунитевых повреждений ДНК АТМ, зависимая от него киназа контрольной точки Chek2 отвечали исключительно на радиотерапевтическое воздействие. На транскрипционном и трансляционном уровне CDK8 оказался индифферентен как к воздействию терапевтических доз облучения, так и к 1 мкМ препарата SnxB. Это удивительно, поскольку соединение не является ингибитором киназной активности CDK8 и CDK19, а не их синтеза. Несмотря на обнаружение конкретных участников описанного каскада оставалось неясным существуют ли промежуточные факторы регуляции p53 через CDK8/19?

Транскрипционный фактор NFкВ регулирует выживаемость клеток при стрессовых воздействиях [Ryazantseva N.V. et al., 2010; Wu H., Lozano G., 1994]. Группой И. Ронинсона установлена способность CDK8/19 усиливать индукцию транскрипции ряда генов с участием NFкВ [Chen M. et al., 2017]. Наши исследования подтвердили участие ЭТОГО транскрипционного фактора В регуляции p53 в ответ на лучевые воздействия. Добавление MRT67307 ингибитора ТВК1 и IKKє – за 1-3 часа до облучения приводит к трансляционному и транскрипционному подавлению р53. Этот эффект можно объяснить следующим образом: ДНК-повреждающие стимулы, в частности, ионизирующее излучение, могут активировать фермент ІкВ-киназу (ІККє). ІКК, в свою очередь, фосфорилирует белок ІкВа, что приводит к диссоциации ІкВа от NFкВ и протеасомной деградации последнего [Brasier A.R., 2006; Perkins N.D., 2007; Concetti J., Wilson C.L., 2018]. Это, в свою очередь, приводит к активации p53 [Pal S. et al., 2014; Carrà G., 2020]. Ингибирование ІККє приводит к стабилизации NFкВ и подавлению p53, что и подтверждено нами методами ПЦР и иммуноблоттинга. Иная картина наблюдается при одновременном ингибировании CDK8/19 и IKKє: индукция *TP53* и его продукта почти полностью восстанавливается - эффекты супрессии каждым ингибитором в отдельности снимаются при их комбинации. Вероятное объяснение состоит в следующем: CDK8/19 и NFкВ кооперируют в индукции провоспалительных цитокинов; ингибирование сенексином Б или инактивация shRNA CDK8/19 подавляет NFкВопосредованные сигналы, но не влияет на его стабильность или транслокацию [Chen M. et al., 2017].

В литературе описаны и другие факторы, способные создать схожий с описанным в диссертации транскрипционный профиль. Опухолевый супрессор FBXO31 способен влиять на уровень p53 через подавление активности Mdm2 [Malonia S.K. et al., 2015], при этом опосредуя деградацию циклина D1, вызывая задержку клеточного цикла на границе G₁/S [Santra M.K. et al., 2009]. CDK8/19 Ингибирование повышает чувствительность HER2клеток положительного рака молочной железы к препаратам, нацеленным на HER2, и влияет на связывание ряда сигнальных белков с рецепторами эпидермального фактора роста, преодолевая лекарственную устойчивость [Ding X. et al., 2022]. Требуется дальнейший анализ молекулярных взаимодействий и путей регуляций CDK8/19, что выходит за пределы настоящего исследования.

В практическом отношении установленные в работе эффекты снижения активации p53 при ингибировании CDK8/19 могут найти применение в онкологической клинике: ингибиторы CDK8/19 нетоксичны при длительном применении *in vivo* (клинические испытания отдельных химических классов этих соединений начаты). Фактически ингибиторы CDK8/19 функционируют как нокаут p53, отменяя задержку клеточного цикла и, таким образом, усиливая лучевые повреждения. Требуются детальный систематический анализ механизмов

99

и доклинические испытания. Однако необходимо учитывать возможность видоспецифической регуляции перепрограммирования транскрипции, в частности, различной чувствительности клеток человека и грызунов к ингибиторам CDK8/19.

ЗАКЛЮЧЕНИЕ

Лучевая терапия остаётся одним из самых распространенных И эффективных методов борьбы со злокачественными опухолями. Однако, в ответ на ионизирующее излучение в опухолевых клетках активируются механизмы выживания, что снижает эффективность лечения и повышает вероятность прогрессии заболевания. В возникновении данного феномена одну из ключевых ролей играют сигнальные пути, регулируемые фактором р53. Этот механизм необходим для остановки репликации ДНК и запуска программ репарации; а в случае сильного стрессового воздействия и масштабных клеточных повреждений активируются каскады гибели клеток. С другой стороны клетки, несущие инактивирующие мутации р53, также могут выживать – так как р53-зависимый апоптоз осложнён – и поддерживать выживание окружающих клеток (паракринная регуляция выживаемости), позволяя опухоли рецидивировать. Одним ИЗ механизмов, отвечающих за это явление, является перепрограммирование транскрипции генов с участием циклинзависимых протеинкиназ CDK8/19. Этот механизм обеспечивает активацию ряда антиапоптотических генов и становление паракринной защиты.

Для оценки эффекта облучения, воздействия сенексином Б – ингибитором CDK8/19, а также их комбинации использована пара изогенных клеточных линий с интактным p53 и нефункционирующим p53: колоректальная аденокарцинома человека HCT116 и сублиния HCT116p53KO. Эти модели используются в экспериментальной биологии опухолей. Рак прямой и толстой кишки – распространённая опухоль с плохим прогнозом.

С помощью световой микроскопии и МТТ-теста показана гибель клеток НСТ116р53КО при воздействии терапевтических доз облучения. На линии HCT116 повреждающие эффекты выражены слабее. Добавление ингибитора CDK8/19 усиливало гибель этих клеток по сравнению с облучением без препарата, при этом статистически значимо не снижало выживаемость клеток HCT116p53KO.

Исследование распределения клеточного цикла с помощью проточной цитофлуориметрии позволило выявить дозо- и времязависимую задержку в G₂/M клеток HCT116, при этом в ответ на меньшие дозы клетки практически не погибали. Напротив, в сублинии HCT116p53KO обнаружен больший процент апоптотических (subG₁) клеток, популяция не задерживалась в p53-зависимой сверочной точке G₂/M. Сенексин Б позволил клеткам с функционирующим p53 не задерживаться в фазе G₂/M и пройти далее с нерепарированными повреждениями. У нокаутов изменений клеточного цикла не наблюдали.

При проведении тестов на образование колоний обнаружено, что при воздействии радиации клетки HCT116p53KO имеют более низкую долговременную выживаемость по сравнению с клетками p53 дикого типа. Комбинация с ингибитором CDK8/19 приводила к более выраженной гибели колоний HCT116 была сравнима с гибелью нокаутных по p53 колоний клеток при облучении соответствующими дозами. Эффект сенексина Б на клетках с нефункционирующим p53 практически не наблюдался.

В результате изучения клеточного старения подчеркнута связь CDK8/19 и р53. Добавление сенексина Б перед облучением снимало приобретение клетками НСТ116 фенотипа старения.

Вторым этапом исследования являлся анализ конкретных молекулярных (транскрипционных) механизмов и взаимодействий, реализующих наблюдаемые выше эффекты. Изучение экспрессии генов в ответ на радиотерапевтическое и химиотерапевтическое воздействие методом ПЦР в реальном времени включал два пула: первая группа генов – *TP53*, а также зависимые от него *CDKN1A*, *BBC3 и PMAIP1* важны для баланса выживания-гибели. Вторая группа включала генырегуляторы р53, активирующие и модулирующие экспрессию *TP53* в ответ на стрессовые сигналы: *ATM*, *CHEK2*, *MDM2* и отдельно *CDK8*.

Активация *TP53* и *CDKN1A* в клетках HCT116 происходит в первые часы после облучения, достигает максимума через 12-24 ч и постепенно снижается. Ингибиторы CDK8/19 существенно снижали активацию этих генов. Изучение экспрессии *BBC3* и *PMAIP1* позволило выявить заметный ответ только на высокие дозы облучения, при этом *PMAIP1* изменялся значительно слабее. Эти гены не регулировались сенексином Б. В сублинии HCT116p53KO экспрессия соответствующих генов изменялась незначительно или оставалась на уровне необлученного контроля.

Активация экспрессии генов *ATM*, *CHEK2*, *MDM2* и *CDK8* зависела от дозы облучения и не отличалась между линиями с интактным и инактивированным p53. Не было и отличий в присутствии сенексина Б. Это подтверждает предположение о существовании каскада CDK8/19-p53, не затрагивающего механизмы восходящего уровня регуляции (upstream).

Наконец, результаты иммуноблоттинга p53, p21, PUMA и NOXA (продуктов описанных выше генов), а также ATM, Chk2, Mdm2 и CDK8 позволили показать связь p53-зависимой регуляции с активностью CDK8/19. На посттранскрипционном уровне не обнаружен эффект сенексина Б на белки, находящиеся выше p53 по каскаду регуляции. Изменения в индукции при синергетическом воздействии зафиксированы только для p53-регулируемых белков в клетках HCT116 (интактный p53).

Предположение о том, что регуляция p53 через CDK8/19 и комплекс Mediator peanusyercя не напрямую, а с участием транскрипционного фактора NFкB, подтверждается результатами ПЦР и иммуноблоттинга. Ингибирование TBK1 и IKKє во время облучения уменьшает активацию *TP53* и накопление p53, однако одновременное выключение CDK8/19 и NFкB приводит к восстановлению экспрессии *TP53* в облученных клетках.

Главный общебиологический результат исследования – установление роли транскрипционного фактора p53 как кофактора перепрограммирования транскрипции в конкретной ситуации – воздействии ионизирующего излучения на опухолевые клетки человека. Регуляция *ТР53* и p53-зависимых генов

опосредована транскрипционными протеинкиназами CDK8/19. В клетках с интактным p53 фармакологическое ингибирование CDK8/19 или генетическая инактивация этих протеинкиназ функционально эквивалентны нокауту гена *TP53*: вместо p53-зависимой задержки клеточного цикла и "ускользания" от гибели в "старение" с последующим выживанием и формированием вторичной агрессивной опухоли комбинация с ингибитором CDK8/19 отменяет задержку смен фаз клеточного цикла, направляя клетки к контрольным точкам с нерепарируемыми повреждениями и гибели.

Основной практический результат исследования – обоснование молекулярного механизма повышения чувствительности опухолевых клеток с различным статусом p53 посредством ингибирования CDK8/19. Поскольку ингибиторы перепрограммирования транскрипции нетоксичны при длительном применении, представляются перспективными доклиническое изучение возможности их сочетанного применения в лучевой терапии опухолей.

Нерешенными остаются следующие проблемы: как связаны p53 и NFкB в регуляции перепрограммирования транскрипции? Возможны ли ситуации, когда первый и второй кофакторы функционируют в разных областях гена *TP53?* Являются ли p53 и NFкB корепрессорами или только коактиваторами транскрипции, и может ли этот выбор определяться внеклеточным стимулом и тканевым происхождением клеток? Как функционируют p63 и p73 в указанных ситуациях и могут ли эти белки замещать утрату p53?

Результаты диссертации опубликованы в 3-х научных статьях в изданиях, индексируемых в базах РИНЦ, Scopus и Web of Science. Получен патент Российской Федерации на Способ усиления гибели опухолевых клеток при комбинации ионизирующего излучения и ингибитора CDK. Материалы работы представлены на 7 конференциях в виде постеров или докладов. Работа поддержана стипендией Президента Российской Федерации для обучающихся за рубежом (стажировка в Университете штата Южная Каролина, г. Коламбия, США). Отдельные фрагменты диссертационного исследования выполнены в рамках Мегагранта Правительства Российской Федерации (2018-2020 гг.).

выводы

1. Низкомолекулярные селективные ингибиторы циклинзависимых протеинкиназ 8 и 19 (CDK8/19) повышают гибель клеток колоректального рака человека с интактным p53 (линия HCT116) в ответ на ионизирующее излучение (терапевтический диапазон разовых доз 2-10 Гр). Этот эффект сопровождается снижением доли клеток с фенотипом "старения" и предотвращением задержки клеточного цикла. В изогенной сублинии HCT116p53KO (отсутствует p53) ингибирование CDK8/19 не изменяет динамику нарушения жизнеспособности облученных клеток.

2. Облучение клеток HCT116 вызывает срочную (в первые часы) активацию экспрессии p53-зависимых генов *TP53*, *CDKN1A* (p21) и *BB3* (PUMA). В облученных клетках HCT116p53KO эти гены не активируются.

3. В регуляции выживания в ответ на облучение ингибирование CDK8/19 при интактном р53 эквивалентно нокауту гена *TP53*: ингибитор CDK8/19 повышает радиочувствительность клеток.

4. Ингибиторы CDK8/19 и делеция генов обеих протеинкиназ снижают срочную активацию гена *TP53* в ответ на облучение. Установлена роль перепрограммирования транскрипции в индукции p53-зависимых ответов.

5. Кофактор перепрограммирования транскрипции NFкВ частично опосредует срочную активацию *TP53* в облученных клетках. При облучении с одновременным применением ингибиторов NFкB и CDK8/19 уровень мPHK p53 восстанавливается, предполагая сложный механизм регуляции гена *TP53*.

 6. Нетоксичные селективные ингибиторы перепрограммирования транскрипции перспективны как компоненты сочетанных режимов терапии p53зависимых опухолей.

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

- Akiyama A. Abnormal accumulation of p53 predicts radioresistance leading to poor survival in patients with endometrial carcinoma / A. Akiyama, T. Minaguchi, K. Fujieda, Y. Hosokawa, K. Nishida, A. Shikama, N. Tasaka, M. Sakurai, H. Ochi, T. Satoh // Oncology Letters. – 2019. – T. 18. – № 6. – C. 5952-8.
- Akiyoshi T. Predicting the response to preoperative radiation or chemoradiation by a microarray analysis of the gene expression profiles in rectal cancer / T. Akiyoshi, T. Kobunai, T. Watanabe // Surgery today. – 2012. – T. 42. – № 8. – C. 713-9.
- Alexandrova E.M. Improving survival by exploiting tumour dependence on stabilized mutant p53 for treatment / E.M. Alexandrova, A.R. Yallowitz, D. Li, S. Xu, R. Schulz, D.A. Proia, G. Lozano, M. Dobbelstein, U.M. Moll // Nature. – 2015. – T. 523. – № 7560. – C. 352-6.
- 4. Allred D.C. Association of p53 protein expression with tumor cell proliferation rate and clinical outcome in node-negative breast cancer / D.C. Allred, G.M. Clark, R. Elledge, S.A. Fuqua, R.W. Brown, G.C. Chamness, C.K. Osborne, W.L. McGuire // JNCI: Journal of the National Cancer Institute. 1993. T. 85. № 3. C. 200-6.
- Al-Rashdan A. Radiation therapy with cyclin-dependent kinase 4/6 inhibitors: a multi-institutional safety and toxicity study / A. Al-Rashdan, S. Quirk, M. Roumeliotis, T. Abedin, C.P. Amaro, L. Barbera, J.Q. Cao // International Journal of Radiation Oncology* Biology* Physics. 2022. T. 114. №. 3. C. 399-408.
- Ambasta R.K. Can luteolin be a therapeutic molecule for both colon cancer and diabetes? / R.K. Ambasta, R. Gupta, D. Kumar, S. Bhattacharya, A. Sarkar, P. Kumar // Briefings in functional genomics. – 2019. – T. 18. – № 4. – C. 230-9.
- Amundson S.A. Gene expression profiles for monitoring radiation exposure / S.A. Amundson, J.A. Fornace Jr // Radiation protection dosimetry 2001. T. 97. № 1. C. 11-6.
- 8. Anifowose A. Inducing apoptosis through upregulation of p53: structure–activity exploration of anthraquinone analogs / A. Anifowose, A.A. Agbowuro, R.

Tripathi, W. Lu, C. Tan, X. Yang, B. Wang // Medicinal Chemistry Research. – 2020. – T. 29. – № 7. – C. 1199-210.

- Anifowose A. Upregulation of p53 through induction of MDM2 degradation: Amino acid prodrugs of anthraquinone analogs / Z. Yuan, X. Yang, Z. Pan, Y. Zheng, Z. Zhang, B. Wang // Bioorganic & medicinal chemistry letters. – 2020. – T. 30. – № 2. – C. 126786.
- Attardi L.D. The role of p53-mediated apoptosis as a crucial anti-tumor response to genomic instability: lessons from mouse models / L.D. Attardi // Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2005. T. 569. № 1-2. C. 145-57.
- Audetat K.A. A kinase-independent role for cyclin-dependent kinase 19 in p53 response / K.A. Audetat, M.D. Galbraith, A.T. Odell, T. Lee, A. Pandey, J.M. Espinosa, R.D. Dowell, D.J. Taatjes // Molecular and cellular biology. 2017. T. 37. № 13. C. 00626-16.
- Baan R. A review of human carcinogens—part F: chemical agents and related occupations / R. Baan, Y. Grosse, K. Straif, B. Secretan, F. El Ghissassi, V. Bouvard, L. Benbrahim-Tallaa, N. Guha, C. Freeman, L. Galichet, V. Cogliano // The lancet oncology. 2009. T. 10. № 12. C. 1143-4.
- Bagashev A. Cdk9 phosphorylates Pirh2 protein and prevents degradation of p53 protein / A. Bagashev, S. Fan, R. Mukerjee, P. Paolo Claudio, T. Chabrashvili, R.P. Leng, S. Benchimol, B.E. Sawaya // Cell Cycle. 2013. T. 12. № 10. C. 1569-77.
- Ball H.L. ATRIP binding to replication protein A-single-stranded DNA promotes ATR–ATRIP localization but is dispensable for Chk1 phosphorylation / H.L. Ball, J.S. Myers, D. Cortez // Molecular biology of the cell. 2005. T. 16. № 5. C. 2372-81.
- Bauer M.R. Targeting cavity-creating p53 cancer mutations with small-molecule stabilizers: The Y220X paradigm / M.R. Bauer, A. Krämer, G. Settanni, R.N. Jones, X. Ni, R. Khan Tareque, A.R. Fersht, J. Spencer, A.C. Joerger // ACS chemical biology. – 2020. – T. 15. – № 3. – C. 657-68.

- 16. Bénard J. TP53 family members and human cancers / J. Bénard, S. Douc-Rasy, J.C. Ahomadegbe // Human mutation. 2003. T. 21. № 3. C. 182-91.
- Bian L. MRE11-RAD50-NBS1 complex alterations and DNA damage response: Implications for cancer treatment / L. Bian, Y. Meng, M. Zhang, D. Li. // Molecular Cancer. – 2019. – T. 18. – № 1. – C. 1-4.
- Blanden A.R. Synthetic metallochaperone ZMC1 rescues mutant p53 conformation by transporting zinc into cells as an ionophore / A.R. Blanden, X. Yu, A.J. Wolfe, J.A. Gilleran, D.J. Augeri, R.S. O'Dell, E.C. Olson, S.D. Kimball, T.J. Emge, L. Movileanu, D.R. Carpizo // Molecular pharmacology. – 2015. – T. 87. – № 5. – C. 825-31.
- Bourdon J.C. p53 and its isoforms in cancer / J.C. Bourdon // British journal of cancer. 2007. T. 97. № 3. C. 277-82.
- Bouvard V. Tissue and cell-specific expression of the p53-target genes: bax, fas, mdm2 and waf1/p21, before and following ionising irradiation in mice / V. Bouvard, T. Zaitchouk, M. Vacher, A. Duthu, M. Canivet, C. Choisy-Rossi, M. Nieruchalski, E. May // Oncogene. 2000. T. 19. № 5. C. 649-60.
- Brasier, A. R. The NF-κB regulatory network / A.R. Brasier // Cardiovascular toxicology. – 2006. – T. 6. – № 2. – C. 111-130.
- 22. Bristow R.G. Mutant p53 increases radioresistance in rat embryo fibroblasts simultaneously transfected with HPV16-E7 and/or activated H-ras / R.G. Bristow, A. Jang, J. Peacock, S. Chung, S. Benchimol, R.P. Hill // Oncogene. 1994. T. 9. № 6. C. 1527-36.
- Budanov A.V. The role of tumor suppressor p53 in the antioxidant defense and metabolism / A.V. Budanov // Mutant p53 and MDM2 in Cancer. – 2014. – C. 337-58.
- 24. Bykov V.J. Targeting mutant p53 for efficient cancer therapy / V.J. Bykov, S.E. Eriksson, J. Bianchi, K.G. Wiman // Nature Reviews Cancer. 2018. T. 18. № 2. C. 89-102.
- 25. Campisi J. Aging and cancer cell biology / J. Campisi, P. Yaswen // Aging cell. –
 2009. T. 8. № 3. C. 221-5.

- 26. Canman C.E. Activation of the ATM kinase by ionizing radiation and phosphorylation of p53 / C.E. Canman, D.S. Lim, K.A. Cimprich, Y. Taya, K. Tamai, K. Sakaguchi, E. Appella, M.B. Kastan, J.D. Siliciano // Science. 1998. T. 281. № 5383. C. 1677-9.
- 27. Cannan W.J. Mechanisms and consequences of double-strand DNA break formation in chromatin / W.J. Cannan, D.S. Pederson // Journal of cellular physiology. – 2016. – T. 231. – № 1. – C. 3-14.
- Carrà G. P53 vs NF-κB: the role of nuclear factor-kappa B in the regulation of p53 activity and vice versa / G. Carrà, M.F. Lingua, B. Maffeo, R. Taulli, A. Morotti // Cellular and Molecular Life Sciences 2020. T. 77. № 22. C. 4449-4458.
- Chang H.H. Non-homologous DNA end joining and alternative pathways to double-strand break repair / H.H. Chang, N.R. Pannunzio, N. Adachi, M.R. Lieber // Nature reviews Molecular cell biology. – 2017. – T. 18. – № 8. – C. 495-506.
- 30. Chang H.W. p53/BNIP3-dependent mitophagy limits glycolytic shift in radioresistant cancer / H.W. Chang, M.R. Kim, H.J Lee, H.M. Lee, G.C. Kim, Y.S. Lee, H.Y. Nam, M. Lee, H.J. Jang, K.E. Lee, J.C. Lee // Oncogene. 2019. T. 38. № 19. C. 3729-42.
- 31. Chatterjee N. Mechanisms of DNA damage, repair, and mutagenesis / N. Chatterjee, G.C. Walker // Environmental and molecular mutagenesis. 2017. T. 58. № 5. C. 235-63.
- 32. Chen B. Antagonizing CDK8 sensitizes colorectal cancer to radiation through potentiating the transcription of e2f1 target gene apaf1 / B. Chen, P. Wen, G. Hu, Y. Gao, X. Qi, K. Zhu, S. Chen, L. Wu, A. Xu, G. Zhao // Frontiers in cell and developmental biology. 2020. T. 8. № 408. C. 1-19.
- 33. Chen C.Y. Interactions between p53 and MDM2 in a mammalian cell cycle checkpoint pathway / C.Y. Chen, J.D. Oliner, Q. Zhan, A.J. Fornace, B. Vogelstein, M.B. Kastan // Proceedings of the National Academy of Sciences. 1994. T. 29. № 7. C. 2684-8.
- 34. Chen M. CDK8/19 Mediator kinases potentiate induction of transcription by NFκB
 / M. Chen, J. Liang, H. Ji, Z. Yang, S. Altilia, B. Hu, A. Schronce, M.S.
McDermott, G.P. Schools, C.U. Lim, D. Oliver // Proceedings of the National Academy of Sciences. $-2017. - T. 114. - N_{2} 38. - C. 10208-13.$

- 35. Chen M.B. P53 status as a predictive biomarker for patients receiving neoadjuvant radiation-based treatment: a meta-analysis in rectal cancer / M.B. Chen, X.Y. Wu, R. Yu, C. Li, L.Q. Wang, W. Shen, P.H. Lu // PLoS One. 2012. T. 7. № 9. C. 45388.
- Cmielova J. p21Cip1/Waf1 protein and its function based on a subcellular localization [corrected] / J. Cmielova, M. Rezáčová // Journal of cellular biochemistry. – 2011. – T. 112. – № 12. – C. 3502-6.
- 37. Concetti J. and Wilson C.L. NFKB1 and cancer: friend or foe? / J. Concetti and C. L. Wilson. // Cells 2018. T. 7. № 9. C. 133.
- Concin N. p53-dependent radioresistance in ovarian carcinoma cell lines / N. Concin, C. Zeillinger, M. Stimpfel, I. Schiebel, D. Tong, U. Wolff, A. Reiner, S. Leodolter, R. Zeillinger // Cancer letters. 2000. T. 150. № 2. C. 191-9.
- 39. Couture C. p53 and Ki-67 as markers of radioresistance in head and neck carcinoma / C. Couture, H. Raybaud-Diogène, B. Têtu, I. Bairati, D. Murry, J. Allard, A. Fortin // Cancer. 2002. T. 94. № 3. C. 713-22.
- Daley J.M. 53BP1, BRCA1, and the choice between recombination and end joining at DNA double-strand breaks / J.M. Daley, P. Sung // Molecular and cellular biology. – 2014 – T. 34. – № 8. – C. 1380-8.
- Dannappel M.V. Molecular and in vivo functions of the CDK8 and CDK19 kinase modules / M.V. Dannappel, D. Sooraj, J.J. Loh, R. Firestein // Frontiers in cell and developmental biology. – 2019. – C. 171.
- 42. Davidoff A.M. Genetic basis for p53 overexpression in human breast cancer / A.M. Davidoff, P.A. Humphrey, J.D. Iglehart, J.R. Marks // Proceedings of the National Academy of Sciences. 1991. T. 88. № 11. C. 5006-10.
- 43. de Martel C. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis / C. de Martel, D. Georges, F. Bray, J. Ferlay, G.M. Clifford // Lancet Global Health. 2020. T. 8. № 2. C. 180-190.

- 44. Delacroix S. The Rad9–Hus1–Rad1 (9–1–1) clamp activates checkpoint signaling via TopBP1 / S. Delacroix, J.M. Wagner, M. Kobayashi, K.I. Yamamoto, L.M. Karnitz // Genes & development. 2007. T. 21. № 12. C. 1472-7.
- 45. Deng W. Inhibition of PLK3 Attenuates Tubular Epithelial Cell Apoptosis after Renal Ischemia–Reperfusion Injury by Blocking the ATM/P53-Mediated DNA Damage Response / W. Deng, X. Wei, Z. Xie, R. Zhang, Z. Dong, J. Zhang, N. Na // Oxidative Medicine and Cellular Longevity. – 2022. – T. 2022.
- 46. Desai B.M. The anti-melanoma activity of dinaciclib, a cyclin-dependent kinase inhibitor, is dependent on p53 signaling / B.M. Desai, J. Villanueva, T.T. Nguyen, M. Lioni, M. Xiao, J. Kong, C. Krepler, A. Vultur, K.T. Flaherty, K.L. Nathanson, K.S. Smalley // PloS one. 2013. T. 8. № 3. C. 59588.
- 47. Di C. Diallyl disulfide enhances carbon ion beams-induced apoptotic cell death in cervical cancer cells through regulating Tap73/ΔNp73 / C. Di, C. Sun, H. Li, J. Si, H. Zhang, L. Han, Q. Zhao, Y. Liu, B. Liu, G. Miao, L. Gan // Cell Cycle. 2015. T. 14. № 23. C. 3725-33.
- 48. Dietz S. Differential regulation of transcription and induction of programmed cell death by human p53-family members p63 and p73 / S. Dietz, K. Rother, C. Bamberger, H. Schmale, J. Mössner, K. Engeland // FEBS letters. 2002. T. 525. № 1-3. C. 93-9.
- 49. Ding L.H. Gene expression profiles of normal human fibroblasts after exposure to ionizing radiation: a comparative study of low and high doses / L.H. Ding, M. Shingyoji, F. Chen, J.J. Hwang, S. Burma, C. Lee, J.F. Cheng, D.J. Chen //Radiation research. 2005. T. 164. № 1. C. 17-26.
- 50. Ding R. p63 protects chondrosarcoma malignancies mainly by enhancing the expression of PTEN / R. Ding, X. Cai, F. Xu, H. Wang, B. Zhang // Die Pharmazie-An International Journal of Pharmaceutical Sciences. 2017. T. 72. Nº 7. C. 414-8.
- Ding X. Inhibition of CDK8/19 Mediator kinase potentiates HER2-targeting drugs and bypasses resistance to these agents in vitro and in vivo / X. Ding, A.C. Sharko, M.S. McDermott, G.P. Schools, A. Chumanevich, H. Ji, J. Li, L. Zhang, Z.T.

Mack, V. Sikirzhytski, M. Shtutman // Proceedings of the National Academy of Sciences – 2022. – T. 119. – № 32. – C. e2201073119

- 52. Donner A.J. CDK8 is a stimulus-specific positive coregulator of p53 target genes / A.J. Donner, S. Szostek, J.M. Hoover, J.M. Espinosa // Molecular cell. 2007. T. 27. № 1. C. 121-33.
- 53. Dötsch V. p63 and p73, the ancestors of p53 / V. Dötsch, F. Bernassola, D. Coutandin, E. Candi, G. Melino // Cold Spring Harbor perspectives in biology. 2010. T. 2. № 9. C. 1-15.
- 54. Doveston R.G. Small-molecule stabilization of the p53–14-3-3 protein-protein interaction / R.G. Doveston, A. Kuusk, S.A. Andrei, S. Leysen, Q. Cao, M.P. Castaldi, A. Hendricks, L. Brunsveld, H. Chen, H. Boyd, C. Ottmann // FEBS letters. 2017. T. 591. № 16. C. 2449-57.
- 55. Dragoj M. Anti-invasive effects of CXCR4 and FAK inhibitors in non-small cell lung carcinomas with mutually inactivated p53 and PTEN tumor suppressors / M. Dragoj, J. Bankovic, E. Sereti, S.J. Stojanov, K. Dimas, M. Pesic, T. Stankovic // Investigational New Drugs. 2017. T. 35. № 6. C. 718-32.
- 56. Duffy M.J. p53 as a target for the treatment of cancer / M.J. Duffy, N.C. Synnott, P.M. McGowan, J. Crown, D. O'Connor, W.M. Gallagher // Cancer treatment reviews. – 2014. – T. 40. – № 10. – C. 1153-60.
- 57. Dupré A. Two-step activation of ATM by DNA and the Mre11–Rad50–Nbs1 complex / A. Dupré, L. Boyer-Chatenet, J. Gautier // Nature structural & molecular biology. 2006. T. 13. № 5. C. 451-7.
- 58. Escarcega R.O. The transcription factor nuclear factor-kappa B and cancer / R.O. Escarcega. S. Fuentes-Alexandro, M. Garcia-Carrasco, A. Gatica, A. Zamora // Clinical Oncology. 2007. T. 19. № 2. C. 154-61.
- 59. Fant C.B. Regulatory functions of the Mediator kinases CDK8 and CDK19 / C.B.
 Fant, D.J. Taatjes // Transcription. 2019. T. 10. № 2. C. 76-90.
- 60. Fedele M. The POZ/BTB and AT-hook containing zinc finger 1 (PATZ1) transcription regulator: physiological functions and disease involvement / M.

Fedele, E. Crescenzi, L. Cerchia // International journal of molecular sciences. – 2017. – T. 18. – № 12. – C. 2524.

- 61. Fei P. P53 and radiation responses / P. Fei, W.S. El-Deiry // Oncogene. 2003. –
 T. 22. № 37. C. 5774-83.
- Ferlay J. Global Cancer Observatory: Cancer / J. Ferlay, M. Ervik, F. Lam, M. Colombet, L. Mery, M. Piñeros // Today. Lyon: International Agency for Research on Cancer. 2020.
- 63. Fernandez-Zapico M.E. A functional family-wide screening of SP/KLF proteins identifies a subset of suppressors of KRAS-mediated cell growth / M.E. Fernandez-Zapico, G.A. Lomberk, S. Tsuji, C.J. DeMars, M.R. Bardsley, Y.H. Lin, L.L. Almada, J.J. Han, D. Mukhopadhyay, T. Ordog, N.S. Buttar // Biochemical Journal. 2011. T. 435. № 2. C. 529-37.
- 64. Flynn R.L. ATR: a master conductor of cellular responses to DNA replication stress / R.L. Flynn, L. Zou // Trends in biochemical sciences. 2011. T. 36. № 3. C. 133-40.
- 65. Freed-Pastor W.A. Mutant p53: one name, many proteins // W.A. Freed-Pastor, C. Prives / Genes & development. 2012. T. 26. № 12. C. 1268-86.
- 66. Gajjar M. The p53 mRNA-Mdm2 interaction controls Mdm2 nuclear trafficking and is required for p53 activation following DNA damage / M. Gajjar, M.M. Candeias, L. Malbert-Colas, A. Mazars, J. Fujita, V. Olivares-Illana, R. Fåhraeus // Cancer cell. – 2012. – T. 21. – № 1. – C. 25-35.
- 67. Galbraith M.D. CDK8: a positive regulator of transcription / M.D. Galbraith, A.J. Donner, J.M. Espinosa // Transcription. 2010. T. 1. № 1. C. 4-12.
- Garcia C.A. Mutation detection by pyrosequencing: sequencing of exons 5–8 of the p53 tumor suppressor gene / C.A. Garcia, A. Ahmadian, B. Gharizadeh, J. Lundeberg, M. Ronaghi, P. Nyrén // Gene. – 2000. – T. 253. – № 2. – C. 249-57.
- 69. Garufi A. Zn (II)-curc targets p53 in thyroid cancer cells / A. Garufi, V. D'Orazi,
 A. Crispini, G. D'Orazi // International Journal of Oncology. 2015. T. 47. № 4. C. 1241-8.

- 70. Gary C. Selective antitumor activity of roscovitine in head and neck cancer / C. Gary, M. Hajek, A. Biktasova, G. Bellinger, W.G. Yarbrough, N. Issaeva // Oncotarget. 2016. T. 7. № 25. C. 38598.
- 71. Giono L.E. Mdm2 promotes Cdc25C protein degradation and delays cell cycle progression through the G2/M phase / L.E. Giono, L. Resnick-Silverman, L.A. Carvajal, S. St Clair, J.J. Manfredi // Oncogene. 2017. T. 36. № 49. C. 6762-73.
- Gluck W.L. Phase 1 study of the MDM2 inhibitor AMG 232 in patients with advanced P53 wild-type solid tumors or multiple myeloma / W.L. Gluck, M.M. Gounder, R. Frank, F. Eskens, J.Y. Blay, PA. Cassier, J.C. Soria, S. Chawla, V. de Weger, A.J. Wagner, D. Siegel // Investigational New Drugs. 2020. T. 38. № 3. C. 831-43.
- 73. Gomes S. New inhibitor of the TAp73 interaction with MDM2 and mutant p53 with promising antitumor activity against neuroblastoma / S. Gomes, L. Raimundo, J. Soares, J.B. Loureiro, M. Leão, H. Ramos, M.N. Monteiro, A. Lemos, J. Moreira, M. Pinto, P. Chlapek // Cancer letters. 2019. T. 446. № 1. C. 90-102.
- 74. Graham K. FAK deletion promotes p53-mediated induction of p21, DNA-damage responses and radio-resistance in advanced squamous cancer cells / K. Graham, K. Moran-Jones, O.J. Sansom, V.G. Brunton, M.C. Frame // PLoS One. 2011. T. 6. № 12. C. 1-15.
- 75. Gudkov A.V. The role of p53 in determining sensitivity to radiotherapy / A.V. Gudkov, E.A. Komarova // Nature Reviews Cancer. 2003. T. 3. № 2. C. 117-29.
- Gunaratne P.H. Activating p53 family member TAp63: a novel therapeutic strategy for targeting p53-altered tumors / P.H. Gunaratne, Y. Pan, A.K. Rao, C. Lin, A. Hernandez-Herrera, K. Liang, A.S. Rait, A. Venkatanarayan, A.L. Benham, F. Rubab, S.S. Kim // Cancer. 2019. T. 125. № 14. C. 2409-22.
- 77. Haffty B.G. Molecular markers in clinical radiation oncology / B.G. Haffty, P.M.
 Glazer // Oncogene. 2003. T. 22. № 37. C. 5915-25.

- 78. Hagen K.R. Silencing CDK4 radiosensitizes breast cancer cells by promoting apoptosis / K.R. Hagen, X. Zeng, M.Y. Lee, S. Tucker Kahn, M.K. Harrison Pitner, S.S. Zaky, Y. Liu, R.M. O'Regan, X. Deng, H.I. Saavedra // Cell division. 2013. T. 8. № 1. C. 1-7.
- 79. Halacli S.O. Effects of gamma irradiation on cell cycle, apoptosis and telomerase activity in p53 wild-type and deficient HCT116 colon cancer cell lines / S.O. Halacli, H. Canpinar, E. Cimen, A. Sunguroglu // Oncology letters. 2013. T. 6. № 3. C. 807-10.
- Harms K.L. The functional domains in p53 family proteins exhibit both common and distinct properties / K.L. Harms, X. Chen // Cell death and differentiation. – 2006. – T. 13. – № 6. – C. 890-7.
- Harris C.C. Structure and function of the p53 tumor suppressor gene: clues for rational cancer therapeutic strategies / C.C. Harris // JNCI: Journal of the National Cancer Institute. 1996. T. 88. № 20. C. 1442-55.
- 82. Hartmann A. p53 gene mutations inside and outside of exons 5-8: the patterns differ in breast and other cancers / A. Hartmann, H. Blaszyk, R.M. McGovern, J.J. Schroeder, J. Cunningham, E.M. De Vries, J.S. Kovach, S.S. Sommer // Oncogene. 1995. T. 10. № 4. C. 681-8.
- 83. He W. Resurrecting a p53 peptide activator-An enabling nanoengineering strategy for peptide therapeutics / W. He, J. Yan, Y. Li, S. Yan, S. Wang, P. Hou, W. Lu // Journal of Controlled Release. – 2020. – T. 325. – C. 293-303.
- Hua K. Functional characterization of duck TBK1 in IFN-β induction / K. Hua, Y. Li, H. Chen, J. Ni, D. Bi, R. Luo, H. Jin // Cytokine 2018. T. 111. C. 325-333.
- 85. Huang L. Curcumol triggers apoptosis of p53 mutant triple-negative human breast cancer MDA-MB 231 cells via activation of p73 and PUMA / L. Huang, A. Li, G. Liao, F. Yang, J. Yang, X. Chen, X. Jiang // Oncology letters. 2017. T. 14. № 1. C. 1080-8.

- 86. Huang R.X. DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer / R.X. Huang, P.K. Zhou // Signal transduction and targeted therapy. – 2020. – T. 5. – № 1. – C. 1-27.
- 87. Huerta S. Role of p53, Bax, p21, and DNA-PKcs in radiation sensitivity of HCT-116 cells and xenografts / S. Huerta, X. Gao, S. Dineen, P. Kapur, D. Saha, J. Meyer // Surgery. 2013. T. 154. № 2. C. 143-51.
- 88. Ingallina E. Mechanical cues control mutant p53 stability through a mevalonate– RhoA axis / E. Ingallina, G. Sorrentino, R. Bertolio, K Lisek, A. Zannini, L. Azzolin, L.U. Severino, D. Scaini, M. Mano, F. Mantovani, A. Rosato // Nature cell biology. – 2018. – T. 20. – № 1. – C. 28-35.
- Inoue K. Alterations of p63 and p73 in human cancers / K. Inoue, E.A. Fry // Mutant p53 and MDM2 in Cancer. – 2014. – C. 17-40.
- Itahana K. Methods to detect biomarkers of cellular senescence / K. Itahana, J. Campisi, G.P. Dimri // Biological Aging. 2007. T. 371. C. 21-31.
- 91. Jabbour-Leung N.A. Sequential combination therapy of CDK inhibition and doxorubicin is synthetically lethal in p53-mutant triple-negative breast cancer / N.A. Jabbour-Leung, X. Chen, T. Bui, Y. Jiang, D. Yang, S. Vijayaraghavan, M.J. McArthur, K.K. Hunt, K. Keyomarsi // Molecular cancer therapeutics. 2016. T. 15. № 4. C. 593-607.
- 92. Jazayeri A. ATM-and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks / A. Jazayeri, J. Falck, C. Lukas, J. Bartek, G. Smith, J. Lukas, S.P. Jackson // Nature cell biology. 2006. T. 8. № 1. C. 37-45.
- 93. Jen K.Y. Identification of novel p53 target genes in ionizing radiation response / K.Y. Jen, V.G. Cheung // Cancer research. 2005. T. 65. № 17. C. 7666-73.
- 94. Jinno S. Cdc25A is a novel phosphatase functioning early in the cell cycle / S. Jinno, K. Suto, A. Nagata, M. Igarashi, Y. Kanaoka, H. Nojima, H. Okayama // The EMBO journal. 1994. T. 13. № 7. C. 1549-56.
- 95. Joerger A. Structure–function–rescue: the diverse nature of common p53 cancer mutants / A. Joerger, A.R. Fersht // Oncogene. 2007. T. 26. № 15. C. 2226-42.

- 96. Joerger A.C. Structural evolution of p53, p63, and p73: implication for heterotetramer formation / A.C. Joerger, S. Rajagopalan, E. Natan, D.B. Veprintsev, C.V. Robinson, A.R. Fersht // Proceedings of the National Academy of Sciences. – 2009. – T. 106. – № 42. – C. 17705-10.
- 97. Joerger A.C. The p53 pathway: origins, inactivation in cancer, and emerging therapeutic approaches / A.C. Joerger, A.R. Fersht // Annual review of biochemistry. – 2016. – T. 2. – № 85. – C. 375-404.
- 98. Joerger A.C. The tumor suppressor p53: from structures to drug discovery / A.C. Joerger, A.R. Fersht // Cold Spring Harbor perspectives in biology. 2010. T. 2. № 6. C. 1-21.
- 99. Johnson J. p73 expression modulates p63 and Mdm2 protein presence in complex with p53 family-specific DNA target sequence in squamous cell carcinogenesis / J. Johnson, J. Lagowski, S. Lawson, Y. Liu, M. Kulesz-Martin // Oncogene. 2008. T. 27. № 19. C. 2780-7.
- 100. Johnson J.L. p53 family interacting pathways in carcinogenesis and cellular response to ionizing radiation. / J.L. Johnson, J.P. Lagowski, A. Sundberg, S. Lawson, Y. Liu, M. Kulesz-Martin // Proceedings of the American Association for Cancer Research. – 2005. – T. 46. – № 5691. – C. 1215-1216.
- 101. Kakarougkas A. DNA DSB repair pathway choice: an orchestrated handover mechanism / A. Kakarougkas, P.A. Jeggo // The British journal of radiology. – 2014. – T. 87. – № 1035. – C. 1-8.
- 102. Kalan S. Activation of the p53 transcriptional program sensitizes cancer cells to Cdk7 inhibitors / S. Kalan, R. Amat, M.M. Schachter, N. Kwiatkowski, B.J. Abraham, Y. Liang, T. Zhang, C.M. Olson, S. Larochelle, R.A. Young, N.S. Gray // Cell reports. 2017. T. 21. № 2. C. 467-81.
- 103. Kang M. Anticancer and radiosensitizing effects of the cyclin-dependent kinase inhibitors, AT7519 and SNS-032, on cervical cancer / M. Kang, W. Kim, H.R. Jo, Y.J. Shin, M.H. Kim, J.H. Jeong // International journal of oncology. 2018. T. 53. № 2. C. 703-12.

- 104. Kim W. Cellular stress responses in radiotherapy / W. Kim, S. Lee, D. Seo, D. Kim, K. Kim, E. Kim, J. Kang, K.M. Seong, H. Youn, B. Youn // Cells. 2019. T. 8. № 9. C. 1105.
- 105. Kinner A. γ-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin / A. Kinner, W. Wu, C. Staudt, G. Iliakis // Nucleic Acids Research. – 2008. – T. 36. – № 17. – C. 5678-94.
- 106. Kovács D. Silver nanoparticles defeat p53-positive and p53-negative osteosarcoma cells by triggering mitochondrial stress and apoptosis / D. Kovács, N. Igaz, C. Keskeny, P. Bélteky, T. Tóth, R. Gáspár, D. Madarász, Z. Rázga, Z. Kónya, I.M. Boros, M. Kiricsi // Scientific Reports. 2016. T. 6. № 1. C. 1-3.
- 107. Kreis N.N. p21Waf1/Cip1 deficiency causes multiple mitotic defects in tumor cells
 / N.N. Kreis, M. Sanhaji, M.A. Rieger, F. Louwen, J. Yuan // Oncogene. 2014. –
 T. 33. № 50. C. 5716-28.
- 108. Kuchur O.A. The p53 Protein Family in the Response of Tumor Cells to Ionizing Radiation: Problem Development / O.A. Kuchur, D.O. Kuzmina, M.S. Dukhinova, A.A. Shtil // Acta Naturae. – 2021. – T. 13. – № 3. – C. 65-76.
- 109. Kuchur O.A. Differential Regulation of BBC3 / PUMA and PMAIP1 / Noxa by Ionizing Radiation: A Role for p53 / O.A. Kuchur, P.D. Kuchur, D.O. Kuzmina, A.V. Zavirsky, A.A. Shtil // Cell and tissue biology. 2021. T. 15. № 6. C. 544-553.
- 110. Kuribayashi K. The relative contribution of pro-apoptotic p53-target genes in the triggering of apoptosis following DNA damage in vitro and in vivo / K. Kuribayashi, N.K. Finnberg, J.R. Jeffers, G.P. Zambetti, W.S. El-Deiry // Cell cycle. 2011. T. 10. № 14. C. 2380-9.
- 111. Kurrey N.K. Snail and slug mediate radioresistance and chemoresistance by antagonizing p53-mediated apoptosis and acquiring a stem-like phenotype in ovarian cancer cells / N.K. Kurrey, S.P. Jalgaonkar, A.V. Joglekar, A.D. Ghanate, P.D. Chaskar, R.Y. Doiphode, S.A. Bapat // Stem cells. 2009. T. 27. № 9. C. 2059-68.

- 112. Kwiatkowski N. Targeting transcription regulation in cancer with a covalent CDK7 inhibitor / N. Kwiatkowski, T. Zhang, P.B. Rahl, B.J. Abraham, J. Reddy, S.B. Ficarro, A. Dastur, A. Amzallag, S. Ramaswamy, B. Tesar, C.E. Jenkins // Nature. 2014. T. 511. № 7511. C. 616-20.
- 113. Lane D.P. T antigen is bound to a host protein in SY40-transformed cells / D.P.
 Lane, L.V. Crawford // Nature. 1979. T. 278. № 5701. C. 261-3.
- 114. Latonen L. UV-radiation induces dose-dependent regulation of p53 response and modulates p53-HDM2 interaction in human fibroblasts / L. Latonen, Y. Taya, M. Laiho // Oncogene. – 2001. – T. 20. – № 46. – C. 6784-93.
- 115. Lee B. Cell cycle control as a promising target in melanoma / B. Lee, S. Sandhu,
 G. McArthur // Current opinion in oncology. 2015. T. 27. № 2. C. 141-50.
- 116. Lee J.H. ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex / J.H. Lee, T.T. Paull // Science. – 2005. – T. 308. – № 5721. – C. 551-4.
- 117. Lee J.M. p53 mutations increase resistance to ionizing radiation / J.M. Lee, A. Bernstein // Proceedings of the National Academy of Sciences. 1993. T. 90. № 12. C. 5742-6.
- 118. Lee W.P. Akt phosphorylates myc-associated zinc finger protein (MAZ), releases P-MAZ from the p53 promoter, and activates p53 transcription / W.P. Lee, K.H. Lan, C.P. Li, Y. Chao, H.C. Lin, S.D. Lee // Cancer letters. – 2016. – T. 375. – № 1. – C. 9-19.
- 119. Li C. Regulation of p63 protein stability via ubiquitin-proteasome pathway / C. Li,
 Z.X. Xiao // BioMed research international. 2014. T. 14. C. 1-9.
- 120. Li D. A gain-of-function mutant p53–HSF1 feed forward circuit governs adaptation of cancer cells to proteotoxic stress / D. Li, A. Yallowitz, L. Ozog, N. Marchenko // Cell death & disease. – 2014. – T. 5. – № 4. – C. 1194.
- 121. Li J. Characterizing CDK8/19 Inhibitors through a NFκB-Dependent Cell-Based Assay / Li J., Ji H., Porter D.C., Broude E.V., Roninson I.B., Chen M. // Cells. – 2019. – T. 8. – № 10. – C. 1208.

- 122. Li X. Homologous recombination in DNA repair and DNA damage tolerance / X.
 Li, W.D. Heyer // Cell research. 2008. T. 18. № 1. C. 99-113.
- 123. Li X. Regulation of P53 signaling in breast cancer by the E3 ubiquitin ligase RNF187 / X. Li Z. Niu, C. Sun, S. Zhuo, H. Yang, X. Yang, J. Zhu // Cell Death & Disease. – 2022. – T. 13. – №. 2. – C. 1-11.
- 124. Li Y. Are interactions with p63 and p73 involved in mutant p53 gain of oncogenic function? / Y. Li, C. Prives // Oncogene. – 2007. – T. 26. – № 18. – C. 2220-5.
- 125. Liang J. CDK8 selectively promotes the growth of colon cancer metastases in the liver by regulating gene expression of TIMP3 and matrix metalloproteinases / J. Liang, M. Chen, D. Hughes, A.A. Chumanevich, S. Altilia, V. Kaza, C.U. Lim, H. Kiaris, K. Mythreye, M.M. Pena, E.V. Broude // Cancer research. 2018. T. 78. № 23. C. 6594-606.
- 126. Lim S.O. p53 inhibits tumor cell invasion via the degradation of snail protein in hepatocellular carcinoma / S.O. Lim, H. Kim, G. Jung // FEBS letters. – 2010. – T. 584. – № 11. – C. 2231-6.
- 127. Linzer D.I. Characterization of a 54K dalton cellular SV40 tumor antigen presents in SV40-transformed cells and uninfected embryonal carcinoma cells / D.I. Linzer, A.J. Levine // Cell. 1979. T. 17. № 1. C. 43-52.
- 128. Little J.B. Radiation carcinogenesis / J.B. Little // Carcinogenesis. 2000. T. 21.
 № 3. C. 397-404.
- 129. Liu L. A Slug-dependent mechanism is responsible for tumor suppression of p53-stabilizing compound CP-31398 in p53-mutated endometrial carcinoma / L. Liu, Z.Y. Yu, T.T. Yu, S.H. Cui, L. Yang, H. Chang, Y.H. Qu, X.F. Lv, X.A. Zhang, C.C. Ren // Journal of Cellular Physiology. – 2020. – T. 235. – № 11. – C. 8768-78.
- 130. Liu R. CDK1-mediated SIRT3 activation enhances mitochondrial function and tumor radioresistance / R. Liu, M. Fan, D. Candas, L. Qin, X. Zhang, A. Eldridge, J.X. Zou, T. Zhang, S. Juma, C. Jin, R.F. Li // Molecular cancer therapeutics. – 2015. – T. 14. – № 9. – C. 2090-102.

- 131. Loh S.N. Follow the mutations: toward class-specific, small-molecule reactivation of p53 / S.N. Loh // Biomolecules. 2020. T. 10. № 2. C. 303.
- 132. Lu X. The Wip1 phosphatase and Mdm2: cracking the" Wip" on p53 stability / X.
 Lu, T.A. Nguyen, X. Zhang, L.A. Donehower // Cell Cycle. 2008. T. 7. № 2.
 C. 164-8.
- 133. Lundsten S. Tumor-targeted delivery of the p53-activating peptide VIP116 with PEG-stabilized lipodisks / S. Lundsten, V.A. Hernández, L. Gedda, T. Sarén, C.J. Brown, D.P. Lane, K. Edwards, M. Nestor // Nanomaterials. 2020. T. 10. № 4. C. 783.
- 134. Ma W. Radiation-induced microRNA-622 causes radioresistance in colorectal cancer cells by down-regulating Rb / W. Ma, J. Yu, X. Qi, L. Liang, Y. Zhang, Y. Ding, X. Lin, G. Li, Y. Ding // Oncotarget. – 2015. – T. 6. – № 18. – C. 15984.
- 135. Ma Y.S. Inhibition of USP14 deubiquitinating activity as a potential therapy for tumors with p53 deficiency / Y.S. Ma, X.F. Wang, Y.J. Zhang, P. Luo, H.D. Long, L. Li, H.Q. Yang, R.T. Xie, C.Y. Jia, G.X. Lu, Z.Y. Chang // Molecular Therapy-Oncolytics. 2020. T. 27. № 16. C. 147-57.
- 136. Mahaney B.L. XRCC4 and XLF form long helical protein filaments suitable for DNA end protection and alignment to facilitate DNA double strand break repair / B.L. Mahaney, M. Hammel, K. Meek, J.A. Tainer, S.P. Lees-Miller // Biochemistry and Cell Biology. 2013. T. 91. № 1. C. 31-41.
- 137. Mallya S.M. Requirement for p53 in ionizing-radiation-inhibition of doublestrand-break rejoining by human lymphoblasts / S.M. Mallya, M.O. Sikpi // Mutation Research/DNA Repair. – 1999. – T. 434. – № 2. – C. 119-32.
- Malonia S.K. F-box protein FBXO31 directs degradation of MDM2 to facilitate p53-mediated growth arrest following genotoxic stress / S.K. Malonia, P. Dutta, M.K. Santra, M.R. Green // Proceedings of the National Academy of Sciences. 2015. T. 112. № 28. C. 8632-7.
- 139. Malumbres M. Cyclin-dependent kinases / M. Malumbres // Genome biology. –
 2014. T. 15. № 6. С. 1-10.

- 140. Manohar M.S. Cyclin-dependent kinases as potential targets for colorectal cancer: past, present and future / M.S. Manohar // Future Medicinal Chemistry. 2022. T. 14. №. 14. C. 1087-1105.
- 141. Mantovani F. Mutant p53 as a guardian of the cancer cell / F. Mantovani, L. Collavin, G. Del Sal // Cell Death & Differentiation. 2019. T. 26. № 2. C. 199-212.
- 142. Mardi K. p53 expression in colorectal carcinomas and its correlation with clinicopathological parameters / K. Mardi, M. Sharma, M. Bhardwaj, M. Rao // Clinical Cancer Investigation Journal. – 2017. – T. 6. – № 1. – C. 26.
- 143. Maréchal A. DNA damage sensing by the ATM and ATR kinases / A. Maréchal,
 L. Zou // Cold Spring Harbor perspectives in biology. 2013. T. 5. № 9. C.
 1-18.
- 144. May P. Twenty years of p53 research: structural and functional aspects of the p53 protein / P. May, E. May // Oncogene. 1999. T. 18. № 53. C. 7621-36.
- 145. Mayer C. A radiation-induced gene expression signature as a tool to predict acute radiotherapy-induced adverse side effects / C. Mayer, O. Popanda, B. Greve, E. Fritz, T. Illig, F. Eckardt-Schupp, M. Gomolka, A. Benner, P. Schmezer // Cancer letters. – 2011. – T. 302. – № 1. – C. 20-8.
- 146. Mazan M. CDK8 Inhibitors Induce Transcriptional Reprogramming of AML Cells Associated with Differentiation / M. Mazan, M. Chapellier, M. Järås, M. Mikula, E. Majewska, K. Wiklik, M. Combik, A. Golas, M. Masiejczyk, E. Fiedor, F. Malusa // Blood. – 2019. – T. 134. – № 1. – C. 3774.
- 147. McCleland M.L. Cdk8 deletion in the ApcMin murine tumour model represses EZH2 activity and accelerates tumourigenesis / M.L. McCleland, T.M. Soukup, S.D. Liu, J.H. Esensten, F. de Sousa e Melo, M. Yaylaoglu, S. Warming, M. Roose-Girma, R. Firestein // The Journal of pathology. 2015. T. 237. № 4. C. 508-19.
- 148. McDermott M.S. Inhibition of CDK8 mediator kinase suppresses estrogen dependent transcription and the growth of estrogen receptor positive breast cancer / M.C. McDermott, A.A. Chumanevich, C.U. Lim, J. Liang, M. Chen, S. Altilia, D.

Oliver, J.M. Rae, M. Shtutman, H. Kiaris, B. Győrffy // Oncotarget. – 2017. – T. 8. – № 8. – C. 12558.

- 149. McIlwrath A.J. Cell cycle arrests and radiosensitivity of human tumor cell lines: dependence on wild-type p53 for radiosensitivity / A.J. McIlwrath, P.A. Vasey, G.M. Ross, R. Brown // Cancer research. 1994. T. 54. № 14. C. 3718-22.
- 150. McLaughlin M. HSP90 inhibition sensitizes head and neck cancer to platin-based chemoradiotherapy by modulation of the DNA damage response resulting in chromosomal fragmentation / M. McLaughlin, H.E. Barker, A.A. Khan, M. Pedersen, M. Dillon, D.C. Mansfield, R. Patel, J.N. Kyula, S.A. Bhide, K.L. Newbold, C.M. Nutting // BMC cancer. – 2017. – T. 17. – № 1. – C. 1-3.
- 151. Meng J. Silencing E3 Ubiqutin ligase ITCH as a potential therapy to enhance chemotherapy efficacy in p53 mutant neuroblastoma cells / J. Meng, A.D. Tagalakis, S.L. Hart // Scientific reports. – 2020. – T. 10. – № 1. – C. 1-2.
- 152. Mijit M. Role of p53 in the Regulation of Cellular Senescence / M. Mijit, V. Caracciolo, A. Melillo, F. Amicarelli, A. Giordano // Biomolecules. 2020. T. 10. № 3. C. 420.
- 153. Mirza-Aghazadeh-Attari M. 53BP1: A key player of DNA damage response with critical functions in cancer / M. Mirza-Aghazadeh-Attari, A. Mohammadzadeh, B. Yousefi, A. Mihanfar, A. Karimian, M. Majidinia // DNA repair. – 2019. – T. 73. – C. 110-119.
- 154. Mita M.M. Phase 1 safety, pharmacokinetic and pharmacodynamic study of the cyclin-dependent kinase inhibitor dinaciclib administered every three weeks in patients with advanced malignancies / M.M. Mita, A.C. Mita, J.L. Moseley, J. Poon, K.A. Small, Y.M. Jou, P. Kirschmeier, D. Zhang, Y. Zhu, P. Statkevich, K.K. Sankhala // British journal of cancer. 2017. T. 117. № 9. C. 1258-68.
- 155. Moergel M. Overexpression of p63 is associated with radiation resistance and prognosis in oral squamous cell carcinoma / M. Moergel, E. Abt, M. Stockinger, M. Kunkel // Oral oncology. 2010. T. 46. № 9. C. 667-71.
- 156. Moergel M. ΔNp63 expression in four carcinoma cell lines and the effect on radioresistance—a siRNA knockdown model / M. Moergel, J. Goldschmitt, M.

Stockinger, M. Kunkel // Clinical oral investigations. -2014. - T. 18. - N = 4. - C.1259-68.

- 157. Mohibi S. ZFP14 Regulates Cancer Cell Growth and Migration by Modulating p53 Protein Stability as Part of the MDM2 E3 Ubiquitin Ligase Complex / S. Mohibi, X. Chen, J. Zhang // Cancers. – 2022. – T. 14. – №. 21. – C. 5226.
- 158. Mohiuddin I.S. DNA-PK as an emerging therapeutic target in cancer / I.S. Mohiuddin, M.H. Kang // Frontiers in oncology. 2019. T. 9. № 635. C. 1-8.
- 159. Mordes D.A. TopBP1 activates ATR through ATRIP and a PIKK regulatory domain / D.A. Mordes, G.G. Glick, R. Zhao, D. Cortez // Genes & development. – 2008. – T. 22. – № 11. – C. 1478-89.
- 160. Morris S.M. p53, mutations, and apoptosis in genistein-exposed human lymphoblastoid cells / S.M. Morris, J.J. Chen, O.E. Domon, L.J. McGarrity, M.E. Bishop, M.G. Manjanatha, D.A. Casciano // Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 1998. T. 405. № 1. C. 41-56.
- 161. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays / T. Mosmann // Journal of immunological methods. – 1983. – T. 65. – № 1-2. – C. 55-63.
- Muller P.A. p53 and its mutants in tumor cell migration and invasion / P.A. Muller, K.H. Vousden, J.C. Norman // Journal of Cell Biology. 2011. T. 192. N
 ^o 2. C. 209-18.
- 163. Nakamura A. CDK8/19 inhibition induces premature G1/S transition and ATR-dependent cell death in prostate cancer cells / A. Nakamura, D. Nakata, Y. Kakoi, M. Kunitomo, S. Murai, S. Ebara, A. Hata, T. Hara // Oncotarget. 2018. T. 9. № 17. C. 13474.
- 164. Nemet J. The two faces of Cdk8, a positive/negative regulator of transcription / J. Nemet, B. Jelicic, I. Rubelj, M. Sopta // Biochimie. 2014. T. 97. № 1. C. 22-7.
- 165. Novelli F. Allele-specific silencing of EEC p63 mutant R304W restores p63 transcriptional activity / F. Novelli, A.M. Lena, E. Panatta, W. Nasser, R. Shalom-

Feuerstein, E. Candi, G. Melino // Cell death & disease. – 2016. – T. 7. – № 5. – C. 1-8.

- 166. Okazaki R. Role of p53 in regulating radiation responses / R. Okazaki // Life. –
 2022. T. 12. №. 7. C. 1099.
- 167. Pal S. Chronic inflammation and cancer: potential chemoprevention through nuclear factor kappa B and p53 mutual antagonism / S. Pal, A. Bhattacharjee, A. Ali, N.C. Mandal, S.C. Mandal, M. Pal // Journal of inflammation 2014. T. 11. № 1. C. 1-28.
- 168. Palazzo J.P. The role of p53, p21WAF1/C1P1, and bcl-2 in radioresistant colorectal carcinoma / J.P. Palazzo, N.J. Kafka, L. Grasso, F. Chakrani, C. Hanau, K.H. Cuesta, W.E. Mercer // Human pathology. 1997. T. 28. № 10. C. 1189-95.
- 169. Patiño-Morales C.C. Curcumin stabilizes p53 by interaction with NAD (P) H: quinone oxidoreductase 1 in tumor-derived cell lines / C.C. Patiño-Morales, E. Soto-Reyes, E. Arechaga-Ocampo, E. Ortiz-Sánchez, V. Antonio-Véjar, J. Pedraza-Chaverri, A. García-Carrancá // Redox Biology. – 2020. – T. 28. – C. 101320.
- 170. Paul S. Prediction of in vivo radiation dose status in radiotherapy patients using ex vivo and in vivo gene expression signatures / S. Paul, C.A. Barker, H.C. Turner, A. McLane, S.L. Wolden, S.A. Amundson // Radiation research. 2011. T. 175. № 3. C. 257-65.
- 171. Perera F.P. Environment and cancer: who are susceptible? / F.P. Perera // Science.
 1997. T. 278. № 5340. C. 1068-73.
- 172. Perkins N. D. Integrating cell-signalling pathways with NF-κB and IKK function /
 N.D. Perkins // Nature reviews Molecular cell biology. 2007.– № 8. C. 49-62
- 173. Perri F. Radioresistance in head and neck squamous cell carcinoma: Biological bases and therapeutic implications / F. Perri, R. Pacelli, G. Della Vittoria Scarpati, L. Cella, M. Giuliano, F. Caponigro, S. Pepe // Head & neck. 2015. T. 37. № 5. C. 763-70.

- 174. Pichierri P. The DNA crosslink-induced S-phase checkpoint depends on ATR– CHK1 and ATR–NBS1–FANCD2 pathways / P. Pichierri, F. Rosselli // The EMBO journal. – 2004. – T. 23. – № 5. – C. 1178-87.
- 175. Ploner C. Noxa: at the tip of the balance between life and death / C. Ploner, R. Kofler, A. Villunger // Oncogene. 2008. T. 27. № 1. C. 84-92.
- 176. Plummer M. Global burden of cancers attributable to infections in 2012: a synthetic analysis / M. Plummer, C. de Martel, J. Vignat, J. Ferlay, F. Bray, S. Franceschi // The Lancet Global Health. 2004. T. 4. № 9. C. 609-16.
- 177. Pohl F. Changes of apoptosis, p53, and bc1-2 by irradiation in poorly differentiated thyroid carcinoma cell lines: a prognostic marker for the prospect of therapeutic success? / F. Pohl, J. Grosse, D. Grimm, G. Brockhoff, K. Westphal, J. Moosbauer, O. Koelbl, M. Infanger, C. Eilles, J. Schoenberger // Thyroid. 2010. T. 20. № 2. C. 159-66.
- 178. Prabhu V.V. Small-molecule prodigiosin restores p53 tumor suppressor activity in chemoresistant colorectal cancer stem cells via c-Jun-mediated ΔNp73 inhibition and p73 activation / V.V. Prabhu, B. Hong, J.E. Allen, S. Zhang, A.R. Lulla, D.T. Dicker, W.S. El-Deiry // Cancer research. – 2016. – T. 76. – № 7. – C. 1989-99.
- 179. Quinlan D.C. Accumulation of p53 protein correlates with a poor prognosis in human lung cancer / D.C. Quinlan, A.G. Davidson, C.L. Summers, H.E. Warden, H.M. Doshi // Cancer Research. 1992. T. 52. № 17. C. 4828-31.
- 180. Rajendran V. In vitro tumorigenic assay: colony forming assay for cancer stem cells / V. Rajendran, M.V. Jain // Cancer stem cells. Humana Press, New York. – 2018. – C. 89-95.
- 181. Ramraj S.K. Novel ovarian cancer maintenance therapy targeted at mortalin and mutant p53 / S.K. Ramraj, S.P. Elayapillai, R.C. Pelikan, Y.D. Zhao, Z.R. Isingizwe, A.L. Kennedy, S.A. Lightfoot, D.M. Benbrook // International journal of cancer. – 2020. – T. 147. – № 4. – C. 1086-97.
- 182. Rasafar N. Design and development of high affinity dual anticancer peptideinhibitors against p53-MDM2/X interaction / N. Rasafar, A. Barzegar, E.M. Aghdam // Life Sciences. - 2020. - T. 245. - № 117358. - C. 1-12.

- 183. Reisz J.A. Effects of ionizing radiation on biological molecules—mechanisms of damage and emerging methods of detection / J.A. Reisz, N. Bansal, J. Qian, W. Zhao, C.M. Furdui // Antioxidants & redox signaling. 2014. T. 21. № 2. C. 260-92.
- 184. Ribes-Zamora A. Distinct faces of the Ku heterodimer mediate DNA repair and telomeric functions/ A. Ribes-Zamora, I. Mihalek, O. Lichtarge, A.A. Bertuch // Nature structural & molecular biology. – 2007. – T. 14. – № 4. – C. 301-7.
- 185. Rimel J.K. Selective inhibition of CDK7 reveals high-confidence targets and new models for TFIIH function in transcription / J.K. Rimel, Z.C. Poss, B. Erickson, Z.L. Maas, C.C. Ebmeier, J.L. Johnson, T.M. Decker, T.M. Yaron, M.J. Bradley, K.B. Hamman, S. Hu // Genes & development. – 2020. – T. 34. – № 21-22. – C. 1452-73.
- 186. Rong J. Histone H2A-peptide-hybrided upconversion mesoporous silica nanoparticles for bortezomib/p53 delivery and apoptosis induction / J. Rong, P. Li, Y. Ge, H. Chen, J. Wu, R. Zhang, J. Lao, D. Lou, Y. Zhang // Colloids and Surfaces B: Biointerfaces. 2020. T. 186. № 110674. C. 1-11.
- 187. Roninson I.B. Identifying cancers impacted by CDK8/19 / I.B. Roninson, B. Győrffy, Z.T. Mack, A.A. Shtil, M.S. Shtutman, M. Chen, E.V. Broude // Cells. 2019. T. 8. № 8. C. 821.
- 188. Rowland B.D. The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene / B.D. Rowland, R. Bernards, D.S. Peeper // Nature cell biology. 2005. T. 7. № 11. C. 1074-82.
- 189. Ryazantseva N.V. Role of NF-kB, p53, and p21 in the regulation of TNF-[alpha] mediated apoptosis of lymphocytes / N.V. Ryazantseva, V.V. Novitskii, O.B. Zhukova, A.K. Biktasova, O.E. Chechina, E.V. Sazonova, T.T. Radzivil, A.N. Wice, N.Y. Chasovskikh // Bulletin of experimental biology and medicine. 2010. T. 149 № 1. C. 50.
- 190. Saito S.I. ATM Mediates Phosphorylation at Multiple p53 Sites, Including Ser46, in Response to Ionizing Radiation* / S.I. Saito, A.A. Goodarzi, Y. Higashimoto, Y.

Noda, S.P. Lees-Miller, E. Appella, C.W. Anderson // Journal of Biological Chemistry. – 2002. – T. 277. – № 15. – C. 12491-4.

- 191. Santra M.K. F-box protein FBXO31 mediates cyclin D1 degradation to induce G1 arrest after DNA damage / M.K. Santra, N. Wajapeyee, M.R. Green // Nature. – 2009. – T. 459. – № 7247. – C. 722-5.
- 192. Schwermer M. Sensitivity to cdk1-inhibition is modulated by p53 status in preclinical models of embryonal tumors / M. Schwermer, S. Lee, J. Köster, T. Van Maerken, H. Stephan, A. Eggert, K. Morik, J.H. Schulte, A. Schramm // Oncotarget. 2015. T. 6. № 17. C. 15425.
- 193. Sharko A.C. The inhibition of CDK8/19 mediator kinases prevents the development of resistance to EGFR-targeting drugs / A.C. Sharko, C.U. Lim, M.S. McDermott, C. Hennes, K.P. Philavong, T. Aiken, V.V. Tatarskiy, I.B. Roninson, E.V. Broude // Cells. 2021. T. 10. № 1. C. 144.
- 194. Shimura T. Activation of the AKT/cyclin D1/Cdk4 survival signaling pathway in radioresistant cancer stem cells / T. Shimura, N. Noma, T. Oikawa, Y. Ochiai, S. Kakuda, Y. Kuwahara, Y. Takai, A. Takahashi, M. Fukumoto // Oncogenesis. 2012. T. 1. № 6. C. 12.
- 195. Sim M.Y. The mechanistic effects of the dioxonaphthoimidazolium analog YM155 in renal cell carcinoma cell cycling and apoptosis / M.Y. Sim, M.L. Go, J.S. Yuen // Life Sciences. – 2018. – T. 203. – C. 282-90.
- 196. Sinha N. Abrus agglutinin promotes irreparable DNA damage by triggering ROS generation followed by ATM-p73 mediated apoptosis in oral squamous cell carcinoma / N. Sinha, P.K. Panda, P.P. Naik, D.N. Das, S. Mukhopadhyay, T.K. Maiti, M.K. Shanmugam, A. Chinnathambi, M.E. Zayed, S.A. Alharbi, G. Sethi // Molecular carcinogenesis. 2017. T. 56. № 11. C. 2400-13.
- 197. Sinha N. p73 induction by Abrus agglutinin facilitates Snail ubiquitination to inhibit epithelial to mesenchymal transition in oral cancer / N. Sinha, B.R. Meher, P.P. Naik, P.K. Panda, S. Mukhapadhyay, T.K. Maiti, S.K. Bhutia // Phytomedicine. 2019. T. 55. C. 179-190.

- 198. So A. RAD51 protects against nonconservative DNA double-strand break repair through a nonenzymatic function / A. So, E. Dardillac, A. Muhammad, C. Chailleux, L. Sesma-Sanz, S. Ragu, E. Le Cam, Y. Canitrot, J.Y. Masson, P. Dupaigne, B.S. Lopez // Nucleic Acids Research. – 2022. – T. 1. – C. 1-16.
- 199. Sokolov M.V. Ionizing radiation induces DNA double-strand breaks in bystander primary human fibroblasts / M.V. Sokolov, L.B. Smilenov, E.J. Hall, I.G. Panyutin, W.M. Bonner, O.A. Sedelnikova // Oncogene. – 2005. – T. 24. – № 49. – C. 7257-65.
- 200. Somerville T.D. TP63-mediated enhancer reprogramming drives the squamous subtype of pancreatic ductal adenocarcinoma / T.D. Somerville, Y. Xu, K. Miyabayashi, H. Tiriac, C.R. Cleary, D. Maia-Silva, J.P. Milazzo, D.A. Tuveson, C.R. Vakoc // Cell reports. 2018. T. 25. № 7. C. 1741-55.
- 201. Steinparzer I. Transcriptional responses to IFN-γ require mediator kinase-dependent pause release and mechanistically distinct CDK8 and CDK19 functions.
 / I. Steinparzer, V. Sedlyarov, J.D. Rubin, K. Eislmayr, M.D. Galbraith, C.B. Levandowski, T. Vcelkova, L. Sneezum, F. Wascher, F. Amman, R. Kleinova // Molecular cell 2019. T. 76. № 3. C. 485-499.
- 202. Stewart B.W. "Cancer etiology" / B.W. Stewart, C.P. Wild // WHO, World Cancer Report. 2014. T. 1. C. 16-54.
- 203. Stewart-Ornstein J. p53 dynamics in response to DNA damage vary across cell lines and are shaped by efficiency of DNA repair and activity of the kinase ATM / J. Stewart-Ornstein, G. Lahav //Science signaling. 2017. T. 10. № 476. C. 6671.
- 204. Sullivan K.D. Mechanisms of transcriptional regulation by p53 / K.D. Sullivan,
 M.D. Galbraith, Z. Andrysik, J.M. Espinosa // Cell Death & Differentiation. –
 2018. T. 25. № 1. C. 133-43.
- 205. Sun B. Inhibition of the transcriptional kinase CDK7 overcomes therapeutic resistance in HER2-positive breast cancers / B. Sun, S. Mason, R.C. Wilson, S.E. Hazard, Y. Wang, R. Fang, Q. Wang, E.S. Yeh, M. Yang, T.M. Roberts, J.J. Zhao // Oncogene. 2020. T. 39. № 1. C. 50-63.

- 206. Sung H. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries / H. Sung, J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, F. Bray // CA: a cancer journal for clinicians. – 2021. – T. 71. – № 3. – C. 209-49.
- 207. Swanner J. Differential cytotoxic and radiosensitizing effects of silver nanoparticles on triple-negative breast cancer and non-triple-negative breast cells / J. Swanner, J. Mims, D.L. Carroll, S.A. Akman, C.M. Furdui, S.V. Torti, R.N. Singh // International Journal of Nanomedicine. 2015. T. 10. C. 3937-3953.
- 208. Symington L.S. Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair / L.S. Symington // Microbiology and molecular biology reviews. 2002. T. 66. № 5. C. 630-70.
- 209. Synnott N.C. COTI-2 reactivates mutant p53 and inhibits growth of triple-negative breast cancer cells / N.C. Synnott, D. O'Connell, J. Crown, M.J. Duffy // Breast Cancer Research and Treatment. – 2020. – T. 179. – № 1. – C. 47-56.
- 210. Sznarkowska A. Reactivation of TAp73 tumor suppressor by protoporphyrin IX, a metabolite of aminolevulinic acid, induces apoptosis in TP53-deficient cancer cells
 / A. Sznarkowska, A. Kostecka, A. Kawiak, P. Acedo, M. Lion, A. Inga, J. Zawacka-Pankau // Cell Division. 2018. T. 13. № 1. C. 1-2.
- 211. Teoule R. Radiation-induced DNA damage and its repair / R. Teoule // International Journal of Radiation Biology and Related Studies in Physics, Chemistry and Medicine. – 1987. – T. 51. – № 4. – C. 537-89.
- 212. The IQVIA Institute. Global Oncology Trends. Outlook to 2025 // Institute Reports. 2021. T. 1.
- 213. Thieme E. Transcriptional Reprogramming of Super-Enhancer Associated Oncogenes Following Inhibition of Cyclin-Dependent Kinase-9 (CDK9) in Aggressive Non-Hodgkin Lymphoma (NHL) / E. Thieme, D. Sun, G.G. Sharma, N. Bruss, T. Liu, D.J. Coleman, Z. Xia, A.V. Danilov // Blood. 2021. T. 138. Nº 1. C. 3493.
- 214. Tibbetts R.S. A role for ATR in the DNA damage-induced phosphorylation of p53 / R.S. Tibbetts, K.M. Brumbaugh, J.M. Williams, J.N. Sarkaria, W.A. Cliby, S.Y.

Shieh, Y. Taya, C. Prives, R.T. Abraham // Genes & development. – 1999. – T. 13. – № 2. – C. 152-7.

- 215. Turinetto V. Multiple facets of histone variant H2AX: a DNA double-strand-break marker with several biological functions / V. Turinetto, C. Giachino // Nucleic acids research. – 2015. – T. 43. – № 5. – C. 2489-98.
- 216. Valentino T. PATZ1 interacts with p53 and regulates expression of p53-target genes enhancing apoptosis or cell survival based on the cellular context / T. Valentino, D. Palmieri, M. Vitiello, G.M. Pierantoni, A. Fusco, M. Fedele // Cell death & disease. 2013. T. 4. № 12. C. 963.
- 217. Vergis R. Expression of Bcl-2, p53, and MDM2 in localized prostate cancer with respect to the outcome of radical radiotherapy dose escalation / R. Vergis, C.M. Corbishley, K. Thomas, A. Horwich, R. Huddart, V. Khoo, R. Eeles, M.R. Sydes, C.S. Cooper, D. Dearnaley, C. Parker // International Journal of Radiation Oncology* Biology* Physics. 2010. T. 78. № 1. C. 35-41.
- 218. Viktorsson K. The role of p53 in treatment responses of lung cancer / K. Viktorsson, L. De Petris, R. Lewensohn // Biochemical and biophysical research communications. 2005. T. 331. № 3. C. 868-80.
- 219. Wang H. Co-targeting p53-R249S and CDK4 synergistically suppresses survival of hepatocellular carcinoma cells / H. Wang, P. Liao, S.X. Zeng, H. Lu // Cancer biology & therapy. – 2020. – T. 21. – № 3. – C. 269-77.
- 220. Wang J. Cyclin-dependent kinase 2 promotes tumor proliferation and induces radio resistance in glioblastoma / J. Wang, T. Yang, G. Xu, H. Liu, C. Ren, W. Xie, M. Wang // Translational oncology. 2016. T. 9. № 6. C. 548-56.
- 221. Wang W. Two birds with one stone: NFAT1-MDM2 dual inhibitors for cancer therapy / W. Wang, A. Zafar, M. Rajaei, R. Zhang // Cells. – 2020. – T. 9. – № 5. – C. 1176.
- 222. Wang X. A positive role for c-Abl in Atm and Atr activation in DNA damage response / X. Wang, L. Zeng, J. Wang, J.F. Chau, K.P. Lai, D. Jia, A. Poonepalli, M.P. Hande, H. Liu, G. He, L. He // Cell Death & Differentiation. 2011. T. 18. № 1. C. 5-15.

- 223. Wassman C.D. Computational identification of a transiently open L1/S3 pocket for reactivation of mutant p53 / C.D. Wassman, R. Baronio, Ö. Demir, B.D. Wallentine, C.K. Chen, L.V. Hall, F. Salehi, D.W. Lin, B.P. Chung, G. Wesley Hatfield, A. Richard Chamberlin // Nature communications. 2013. T. 4. № 1. C. 1-9.
- 224. Wei X.W. 2-Styryl-4-aminoquinazoline derivatives as potent DNA-cleavage, p53-activation and in vivo effective anticancer agents / X.W. Wei, J.M. Yuan, W.Y. Huang, N.Y. Chen, X.J. Li, C.X. Pan, D.L. Mo, G.F. Su // European Journal of Medicinal Chemistry. 2020. T. 186. № 111851. C. 1-16.
- 225. WHO Reports. Assessing national capacity for the prevention and control of noncommunicable diseases: report of the 2019 global survey // World Health Organization (Geneva). – 2020.
- 226. Wilkie M.D. TP53 mutations in head and neck cancer cells determine the Warburg phenotypic switch creating metabolic vulnerabilities and therapeutic opportunities for stratified therapies / M.D. Wilkie, E.A. Anaam, A.S. Lau, C.P. Rubbi, T.M. Jones, M.T. Boyd, N. Vlatković // Cancer Letters. 2020. T. 478. № 16. C. 107-21.
- 227. Wogan G.N. Environmental and chemical carcinogenesis / G.N. Wogan S.S. Hecht, J.S. Felton, A.H. Conney, L.A. Loeb // Seminars in Cancer Biology. 2004. T. 14. № 6. C. 473-486.
- 228. Wu H. NF-kappa B activation of p53. A potential mechanism for suppressing cell growth in response to stress / H. Wu, G. Lozano // Journal of Biological Chemistry. 1994. T. 269. № 31. C. 20067-74.
- 229. Wu X. Phosphorylation of nucleotide excision repair factor xeroderma pigmentosum group a by ataxia telangiectasia mutated and Rad3-Related– Dependent checkpoint pathway promotes cell survival in response to UV irradiation / X. Wu, S.M. Shell, Z. Yang, Y. Zou //Cancer research. 2006. T. 66. № 6. C. 2997-3005.
- 230. Yang A. P63 and P73: P53 mimics, menaces and more / A. Yang, F. McKeon // Nature reviews Molecular cell biology. 2000. T. 1. № 3. C. 199-207.

- 231. Yi Y. Role of p53 family proteins in metformin anti-cancer activities / Y. Yi, W. Zhang, J. Yi, Z.X. Xiao // Journal of Cancer. 2019. T. 10. № 11. C. 2434.
- 232. Yosef R. p21 maintains senescent cell viability under persistent DNA damage response by restraining JNK and caspase signaling / R. Yosef, N. Pilpel, N. Papismadov, H. Gal, Y. Ovadya, E. Vadai, S. Miller, Z. Porat, S. Ben-Dor, V. Krizhanovsky // The EMBO journal. 2017. T. 36. № 15. C. 2280-95.
- 233. Yoshida T. Mitochondrial dysfunction, a probable cause of persistent oxidative stress after exposure to ionizing radiation / T. Yoshida, S. Goto, M. Kawakatsu, Y. Urata, T.S. Li // Free radical research. 2012. T. 46. № 2. C. 147-53.
- 234. Yudhani R.D. Metformin modulates cyclin D1 and P53 expression to inhibit cell proliferation and to induce apoptosis in cervical cancer cell lines / R.D. Yudhani RD, I. Astuti, M. Mustofa, D. Indarto, M. Muthmainah. // Asian Pacific Journal of Cancer Prevention. 2019. T. 20. № 6. C. 1667.
- 235. Yue X. DNA-PKcs: A multi-faceted player in DNA damage response / X. Yue, C. Bai, D. Xie, T. Ma, P.K. Zhou // Frontiers in Genetics. 2020. T. 11. № 607428. C. 1-12.
- 236. Yue X. Mutant p53 in cancer: accumulation, gain-of-function, and therapy / X.
 Yue, Y. Zhao, Y. Xu, M. Zheng, Z. Feng, W. Hu // Journal of molecular biology. –
 2017. T. 429. № 11. C. 1595-606.
- 237. Zhang H. Targeting CDK9 reactivates epigenetically silenced genes in cancer / H. Zhang, S. Pandey, M. Travers, H. Sun, G. Morton, J. Madzo, W. Chung, J. Khowsathit, O. Perez-Leal, C.A. Barrero, C. Merali // Cell. 2018. T. 175. № 5. C. 1244-58.
- 238. Zhang Q. Correction: APR-246 reactivates mutant p53 by targeting cysteines 124 and 277 / Q. Zhang, V.J. Bykov, K.G Wiman, J. Zawacka-Pankau // Cell Death & Disease. – 2019. – T. 10. – № 10. – C. 1-2.
- 239. Zhang S. Small-molecule NSC59984 restores p53 pathway signaling and antitumor effects against colorectal cancer via p73 activation and degradation of mutant p53 / S. Zhang, L. Zhou, B. Hong, A.P. van den Heuvel, V.V. Prabhu, N.A. Warfel, C.L.

Kline, D.T. Dicker, L. Kopelovich, W.S. El-Deiry // Cancer research. – 2015. – T. 75. – № 18. – C. 3842-52.

- 240. Zhang W.W. The first approved gene therapy product for cancer Ad-p53 (Gendicine): 12 years in the clinic / W.W. Zhang, L. Li, D. Li, J. Liu, X. Li, W. Li, X. Xu, M.J. Zhang, L.A. Chandler, H. Lin, A. Hu // Human gene therapy. 2018. T. 29. № 2. C. 160-79.
- 241. Zhang Z. et al. CDK19 regulates the proliferation of hematopoietic stem cells and acute myeloid leukemia cells by suppressing p53-mediated transcription of p21 / Z. Zhang, Y. Lu, Y. Qi, Y. Xu, S. Wang, F. Chen, J. Wang // Leukemia. 2022. T. 36. №. 4. C. 956-969.
- 242. Zhao Q. BNIP3-dependent mitophagy safeguards ESC genomic integrity via preventing oxidative stress-induced DNA damage and protecting homologous recombination / Q. Zhao, K. Liu, L. Zhang, Z. Li, L. Wang, J. Cao, T. Zhao // Cell Death & Disease. – 2022. – T. 13. – №. 11. – C. 1-10.
- 243. Zhu N. KLF5 Interacts with p53 in regulating survivin expression in acute lymphoblastic leukemia / N. Zhu, L. Gu, H.W. Findley, C. Chen, J.T. Dong, L. Yang, M. Zhou // Journal of Biological Chemistry. 2006. T. 281. № 21. C. 14711-8.